

formulario

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica

Dirección de los EGEL

ENERO • 2021

Formulario

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica

EGEL-IMECA

Centro Nacional de Evaluación para la Educación Superior, A.C.

Formulario

D.R. © 2020 Centro Nacional de Evaluación para la Educación Superior, A.C. (Ceneval)

Decimoquinta edición

Directorio

Antonio Ávila Díaz

Director General

Alejandra Zúñiga Bohigas

Directora de los Exámenes Generales para el Egreso de la Licenciatura

Wilson Jesús Pool Cibrián

Subdirector de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Arturo Valverde Merlín

Responsable del Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica

Contenido

Diseno de element	los y sistemas mecánicos	9
	de inercia	
	aciones debidas a cargas axiales	
	nación debido a torsión, potencia	
	aciones debidas a flexión	
	es y esfuerzo cortante máximo	
	o carga estática	
	9	
	rectos	
	/imiento	
	ia	
•		
	da	
Recipientes esféric	os a presión	15
Recipientes cilíndria	cos a presión	15
	000 a presion	
	cálculo del consumo de material de aporte, electrodo revestido	
	es a tensión y compresiónes a tensión y compresión	
	es a tension y compresion	
	les mecánicas de los aceros	
	ias en (µm)	
	ro en (µm)	
	a en (µm)	
Ajustes base fiecha	os de producción	. 20
Diseilo de proceso	factura	21
	necánico	
	necánico en la zona plástica	
Procesos de defori	mación masiva o volumétrica	21
	iinas-herramientas	
	e (Ks) para varios metales	
	des mecánicas de materiales	
Materiales recome	ndados en la fabricación de cojinetes	. 25
Deslizamiento sob	re acero/hierro fundido	. 25
	generales para operaciones de torneado	
	rte típicas, ángulos de corte y avances recomendados	
	or computadora	
	en Ingeniería Mecánica, Mecánica Eléctrica, Electromecánica y afines .	
	bajo	
	5	
	otiva	
Droniedados do las	coss sustancias	აა
	encia v eficiencia	
LUGGUUIES DE DOIE	311Ua V CIIUCIIUa	. ບວ

Ciclos termodinámicos	35
Ciclo Otto	35
Ciclo Diesel	36
Ciclo Rankine simple	37
Ciclo Rankine con sobrecalentamiento	
Tabla de aire como gas ideal	42
Ciclo Brayton	
Ciclo Carnot	
Conducción en estado estable en elemento con generación de calor	
Calor transferido por convección, conducción y radiación	
Conducción de calor en estado transitorio	
Propiedades y comportamiento de los fluidos	
Estática de fluidos	
Mecánica de fluidos	
Símbolos de acuerdo con NMX-J-136-ANCE-2007	
Símbolos de acuerdo con EN-60617 o IEC 60617	
Símbolos de acuerdo a la ANSI	56
Fórmulas para calcular el consumo eléctrico y el cálculo del kW-h	57
Sistemas de control analógicos y digitales	58
Ingeniería de control	
Elementos de un diagrama de control	59
Reglas para determinar la función de transferencia del circuito de control total	60
Elementos primitivos de transferencia	61
Reglas empíricas para ajustar elementos de control P, PI y PID.	66
Métodos para determinar la estabilidad	
Abreviaturas	
Simbología de control	
Tabla comparativa de los símbolos eléctricos	
Anexo	
Leyes trigonométricas	86
Identidades trigonométricas	
Valores de las funciones de ángulos importantes	
Fórmulas para potencias y raíces	
Expresiones algebraicas usuales	
Propiedades de los logaritmos	
Tablas de equivalencias	87
Constantes físicas	88
Código de colores para resistencias eléctricas	88
Normatividad aplicable	
•	

Diseño de elementos y sistemas mecánicos

Áreas y momentos de inercia

Sección transversal rectangular

$$A = b \cdot h$$

$$I = \frac{b \cdot h^3}{12}$$

$$I = \frac{b \cdot h^3}{12} \qquad S = \frac{b \cdot h^2}{6}$$

Sección transversal circular hueca (tubo)

$$A = \frac{\pi \cdot \left(d_2^2 - d_1^2\right)}{4}$$

$$J = \frac{\pi \cdot \left(d_2^4 - d_1^4\right)}{32}$$

$$I = \frac{\pi \cdot \left(d_2^4 - d_1^4\right)}{64}$$

Sección transversal circular

$$A = \frac{\pi \cdot d^2}{4}$$

$$I = \frac{\pi \cdot d^4}{64}$$

$$S = \frac{\pi \cdot d^3}{32}$$

$$J = \frac{\pi \cdot d^4}{32}$$

Teorema de los ejes paralelos

$$I_x = I + A \cdot s^2$$

 $A = \text{área (m}^2)$

b = base del rectángulo (m)

h = altura del rectángulo (m)

 $S = \text{m\'odulo de secci\'on } (\text{m}^3)$

I = momento de inercia (m⁴)

 I_x = momento de inercia respecto a un eje dado (m4)

J = momento polar de inercia (m⁴)

d = diámetro (m)

 d_1 = diámetro interior (m)

 d_2 = diámetro exterior (m)

s = distancia entre los dos ejes en consideración (m)

Esfuerzos y deformaciones debidas a cargas axiales

$$\sigma = \mathbf{E} \cdot \mathbf{\epsilon}$$

$$\tau = \frac{V}{A_{-}} \qquad \qquad \tau = G \cdot \gamma$$

 $\delta = L - L_0 \qquad \qquad \varepsilon = \frac{\delta}{L}$

$$\varepsilon = \frac{\delta}{I}$$

 $\delta = \frac{F \cdot L}{F \cdot \Delta}$

$$FS = \frac{S_y}{\sigma}$$

$$FS = \frac{S_y}{\sigma} \qquad FS = \frac{S_{ys}}{\tau}$$

$$m{E} = rac{\Delta_{ ext{esfuerzo}}}{\Delta_{ ext{elongación}}}$$

$$\%_{elongación} = \left(\frac{L_f - L_i}{L_i}\right) \cdot 100$$

$$%_{\text{reducción de área}} = \left(\frac{A_f - A_j}{A_i}\right) \cdot 100$$

A = área de la sección transversal (m²)

 A_c = área de corte (m²)

E = módulo de elasticidad del material o módulo de Young (Pa)

F = fuerza axial (N)

FS = factor de seguridad

G = módulo de elasticidad en cortante o módulo de rigidez (Pa)

L = longitud original de la barra (m)

 L_0 = longitud medida después de la aplicación de la carga (m)

 S_v = resistencia a la cedencia (Pa)

 S_{ys} = resistencia al corte (Pa)

V = fuerza cortante (N)

 γ = deformación angular

 δ = alargamiento (elongación) de la barra o cambio de longitud de la barra (m)

 ε = deformación unitaria normal

 σ = esfuerzo normal (Pa)

 $_{\tau}$ = esfuerzo cortante (Pa)

 Δ = incremento

L_f = longitud final de la probeta

L_i = longitud Inicial de la probeta

% = porcentaje

A_f = área final de la probeta

A_i = área inicial de la probeta

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Esfuerzos y deformación debido a torsión, potencia

$A = A \cdot I$	$\phi = \frac{T \cdot L}{G \cdot J}$	G = módulo de elasticidad en cortante (Pa)
$\phi = \theta \cdot L$	$\psi - \overline{G \cdot I}$	J = momento polar de inercia (m ⁴)
	0.0	L = longitud de la barra (m)
$\gamma = \mathbf{r} \cdot \boldsymbol{\theta}$		r = radio interior donde se localiza el punto que se desea
$ au = \mathbf{G} \cdot \mathbf{\gamma}$		analizar (m)
T . r		S_{ys} = resistencia al corte (Pa)
$\tau = \frac{T \cdot r}{J}$		T = par de torsión o momento de torsión (N·m)
J		ϕ = ángulo de torsión total (rad)
$P = T \cdot \omega$		γ = deformación por cortante
$T = F \cdot r$		$_{\tau}$ = esfuerzo cortante (Pa)
$n = 60 \cdot f$		θ = ángulo de torsión por unidad de longitud (rad/m)
		P = potencia (W)
$FS = \frac{S_{ys}}{\tau}$		ω = velocidad angular (rad/s)
τ		f = frecuencia de rotación o número de revoluciones por unidad de tiempo (rev/s)
		n = revoluciones por minuto (rpm)

Esfuerzos y deformaciones debidas a flexión

Lordor Loo y dorormaoromoo dobrad	o u noxion
$\sigma = \pm \frac{M \cdot y}{I}$ $S = \frac{I}{y}$ $\tau = \frac{V \cdot Q}{I \cdot b}$ $E \cdot I \cdot v'' = -M$ $E \cdot I \cdot v''' = -V$ $E \cdot I \cdot v'''' = -q$	 b = espesor de la sección transversal en el punto donde se desea calcular el esfuerzo cortante (m) I = momento de inercia (m⁴) M = momento flexionante (N·m) q = fuerza distribuida (N/m) Q = primer momento del área o momento estático del área (m³) S = módulo de sección (m³) V = fuerza cortante (N) σ = esfuerzo flexionante (Pa) x = posición de la viga donde se desea evaluar la deflexión, rotación, momento o fuerza cortante de la viga (m) y = distancia del eje neutro a la fibra de estudio (m) v = deflexión de la viga (m) v" = segunda derivada de la deflexión respecto a x (1/m²) v"" = tercera derivada de la deflexión respecto a x (1/m²) v"" = cuarta derivada de la deflexión respecto a x (1/m³)
	$_{\tau}$ = esfuerzo cortante (Pa)

Esfuerzos principales y esfuerzo cortante máximo

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

 θ_{p} = ángulo de orientación de los planos principales (grados)

 $\sigma_{\it med}$ = esfuerzo normal medio (Pa)

 σ_x = esfuerzo normal en la dirección de x (Pa)

 σ_v = esfuerzo normal en la dirección de y (Pa)

 σ_1 = esfuerzo principal máximo (Pa)

 σ_2 = esfuerzo principal mínimo (Pa)

 au_{xy} = esfuerzo cortante en el plano xy (Pa)

 $\tau_{m\acute{a}x}$ = esfuerzo cortante máximo (Pa) (criterio Tresca)

 $\sigma_{\rm v}$ = límite elástico a tensión

 $\sigma_{\rm 1}$, $\sigma_{\rm 3}$ = la mayor y la menor tensión principal en el punto

$\tan 2\theta_{p} = \frac{2 \cdot \tau_{xy}}{\sigma_{x} - \sigma_{y}}$ $\tau_{max} = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$ $\sigma_{med} = \frac{\sigma_{x} + \sigma_{y}}{2}$

 $\tau_{\text{máx}} \ge \frac{\sigma_{\text{y}}}{2}$ $\tau_{\text{máx}} = \frac{(\sigma_{1} - \sigma_{3})}{2}$

Teorías de falla bajo carga estática

Teoría del esfuerzo cortante máximo

$$S_{ys} = 0.5S_y$$

$$n = \frac{S_{ys}}{\tau_{max}}$$

Teoría de la energía de distorsión máxima o de Von Mises

$$\sigma' = \sqrt{\sigma_x^2 - \sigma_x \cdot \sigma_y + \sigma_y^2 + 3 \cdot \tau_{xy}^2} \qquad n = \frac{S_y}{\sigma'}$$

Teoría del esfuerzo normal máximo

$$n = \frac{S_{ut}}{\sigma_1}$$
 cuando

$$\left| \text{máx} \left(\sigma_1, \sigma_2, \sigma_3 \right) \right| > \left| \text{mín} \left(\sigma_1, \sigma_2, \sigma_3 \right) \right|$$

$$n = \frac{S_{uc}}{\sigma_3}$$
 cuando

$$\left| \min \left(\sigma_1, \, \sigma_2, \, \sigma_3 \right) \right| > \left| \max \left(\sigma_1, \, \sigma_2, \, \sigma_3 \right) \right|$$

$$u = \frac{1}{2}\sigma$$

n = factor de seguridad

 S_{ys} = resistencia al corte (Pa)

 S_{ut} = resistencia última a la tensión (Pa)

 S_{uc} = resistencia última a compresión (Pa)

 $_{\sigma}$ = esfuerzo normal (Pa)

 σ' = esfuerzo de Von Mises (Pa)

 σ_x = esfuerzo normal en la dirección

de x (Pa)

 σ_y = esfuerzo normal en la dirección de y (Pa)

 τ_{max} = esfuerzo cortante máximo (Pa)

 τ_{xy} = esfuerzo cortante en el plano xy (Pa)

 u = densidad de energía de deformación unitaria (m, mm)

Polipastos

Polipasto potencial

$$F = \frac{R}{2n}$$

Polipasto exponencial

$$F = \frac{R}{2^n}$$

R = carga(N)

n = número de poleas

F = fuerza para elevar la carga (N)

Columnas

Columna con ambos extremos articulados

$$P_{cr} = \frac{\pi^2 \cdot E \cdot I}{L^2}$$

Columna con un extremo empotrado y el otro libre

$$P_{cr} = \frac{\pi^2 \cdot E \cdot I}{4 \cdot L^2}$$

Columna con ambos extremos empotrados

$$P_{cr} = \frac{4 \cdot \pi^2 \cdot E \cdot I}{I^2}$$

Columna con un extremo empotrado y el otro articulado

$$P_{cr} = \frac{2.046 \cdot \pi^2 \cdot E \cdot I}{I^2}$$

Para todo tipo de extremos

$$\sigma_{cr} = \frac{P_{cr}}{\Delta}$$

$$\sigma_{\rm cr} = \frac{P_{\rm cr}}{A}$$
 $r = \sqrt{\frac{I}{A}}$

Columna con extremos articulados y carga excéntrica

$$\sigma_{c} = \frac{P}{A} \cdot \left[1 + \frac{e \cdot c}{r^{2}} \cdot \sec \left(\frac{L}{2 \cdot r} \cdot \sqrt{\frac{P}{E \cdot A}} \right) \right]$$

A = área de la sección transversal de la columna (m²)

c = distancia del eje centroidal a la fibra

e = excentricidad de la carga (m)

E = módulo de elasticidad o módulo de Young (Pa)

I = momento de inercia para el eje principal respecto al cual se presenta el pandeo (m4)

L = longitud de la columna (m)

P = fuerza excéntrica aplicada (N)

 P_{cr} = carga crítica (N)

r = radio de giro de la sección transversal en el plano de flexión (m)

 σ_c = esfuerzo compresión máximo de la columna (Pa)

 σ_{cr} = esfuerzo crítico de la columna (Pa)

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Motores/engranes rectos

Parámetro	Paso fino (<i>P_d</i> < 20)	Paso grueso (<i>P</i> _d ≥ 20)
Ángulo de presión	20° o 25°	20°
Altura de cabeza (adendum)	1.000/P _d	1.000/P _d
Altura de raíz (adendum)	1.250/P _d	1.250/P _d
Profundidad de trabajo	2.000/P _d	2.000/P _d
Profundidad total	2.250/P _d	2.200/P _d + 0.002 in
Espesor circular del diente	1.571/P _d	1.571/P _d
Radio del filete	0.300/P _d	No estándar
Holgura básica mínima	0.250/P _d	0.200/P _d + 0.002 in
Ancho mínimo de la cresta superior	0.250/P _d	No estándar
Holgura (dientes rasurados o rectificados)	0.350/P _d	0.350/P _d + 0.002 in

$$P_c = \frac{\pi \cdot d_p}{N} \qquad m = \frac{d_p}{N} \qquad d_p = \text{diametro de paso (in)} \\ m = \text{modulo (m/número de dientes)} \\ W_t = \frac{2 \cdot T}{d_p} \qquad W = \frac{W_t}{\cos \phi} \qquad m_v = \text{razón de velocidad angular} \\ W_r = W_t \cdot \tan \phi \qquad P_t = \text{potencia (in·lb/s)} \\ m_v = \frac{\omega_{selida}}{\omega_{entrada}} \qquad m_v = \pm \frac{N_{entrada}}{N_{selida}} \qquad P_t = \text{paso circular (in/número de dientes)} \\ m_t = \frac{1}{m_v} \qquad P_t = \frac{\pi}{P_c} \qquad P_t = \frac{N}{D_p} \qquad W_t = \frac{N_{entrada}}{N_p} \\ P_t = \text{paso diametral (número de dientes)} \\ W_t = \text{fuerza total en el engrane (lb)} \\ W_t = \text{fuerza total en el engrane (lb)} \\ W_t = \text{fuerza tangencial en el engrane (lb)} \\ W_t = \text{fuerza tangencial en el engrane (lb)} \\ W_t = \text{fuerza tangencial en el engrane de entrada} \\ D_p = \frac{N}{P_d} \qquad D_p = \frac{N \cdot P_c}{\pi} \qquad \omega_{entrada} = \text{velocidad angular del engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_{entrada}}{N_t = N_{entrada}} = \text{número de dientes engrane de entrada} \\ V_t = \frac{N_t = N_t}{N_t = N_t} \\ V_t = \frac{N_t}{N_t = N_$$

$$W' = \frac{2}{P_d} \qquad W' = \frac{2 \cdot P_c}{\pi}$$

$$D_e = \frac{N+2}{P_d} \qquad \qquad D_e = \frac{(N+2)P_c}{\pi}$$

$$D_{\!\scriptscriptstyle f} = D_{\!\scriptscriptstyle e} - 2W$$

$$N = P_d \cdot D_p \qquad \qquad N = \frac{\pi \cdot D_p}{P_c}$$

$$E = \frac{1.571}{P_d} \qquad L = \frac{\pi \cdot N_c}{P_d}$$

 d_p = diámetro de paso (in)

m = m'edulo (m/n'emero de dientes)

 m_{ν} = razón de velocidad angular

 m_T = razón de par de torsión

N = número de dientes

 $P = potencia (in \cdot lb/s)$

 ϕ = ángulo de presión (grados)

 ω = velocidad angular (rad/s)

ω_{entrada} = velocidad angular del engrane de entrada(rad/s)

ωsalida = velocidad angular del engrane de salida (rad/s)

Nsalida = número de dientes de engrane de salida Nentrada = número de dientes engrane de entrada

 D_p = diámetro primitivo ó de paso (in, mm)

D_e = diámetro exterior (in, mm)

 D_f = diámetro de fondo (in, mm)

C = distancia entre 2 centros

W = profundidad total del diente (in, mm)

W' = profundidad útil del diente (in, mm)

2.250 = constante para profundidad de dientes de engranes

1.571 = constante para espesor de diente de engranes (paso fino)

E = espesor de diente (in, mm)

L = longitud de cremallera (in, mm)

N_c = número de dientes de la cremallera

Ecuaciones de movimiento

Movimiento circular

$$v = \omega \cdot r$$
 \mathbf{a}_t

$$= \alpha \cdot \mathbf{r}$$
 $\mathbf{a}_r = \omega^2$

Velocidad constante

$$v = \frac{d}{t}$$

Aceleración constante

$$s_{f} = s_{0} + v_{0}t + \frac{1}{2}at^{2}$$

$$a = \frac{v_f - v_0}{t}$$

$$v_f^2 = v_0^2 + 2a(s_f - s_0)$$

$$V_f = V_0 + at$$

$$v = \frac{dx}{dt}$$

$$a = \frac{dv}{dt}$$

$$a = \frac{d^2x}{dt^2}$$

 $a_t = \alpha \cdot r$ $a_r = \omega^2 \cdot r$ $a_r = aceleración lineal (m/s²)$ $ante <math>a_r = aceleración radial (m/s²)$

 a_t = aceleración tangencial (m/s²)

r = radio de giro (m)

s = desplazamiento (m)

 s_f = posición final (m)

 s_0 = posición inicial (m)

 $a = \frac{v_t - v_0}{t}$ t = tiempo (s) v = velocidad lineal (m/s)

 $v_f^2 = v_0^2 + 2a(s_f - s_0)$ Ecuaciones generales $v_f = V_0 + at$ $v_f = \text{velocidad final (m/s)}$ $v_0 = \text{velocidad inicial (m/s)}$ $v_0 = \text{velocidad inicial (m/s)}$ $\alpha = \text{aceleración angular (rad/s^2)}$ $v = \frac{dx}{dt}$ $a = \frac{dv}{dt}$ $a = \frac{d^2x}{dt^2}$ $\omega = \text{velocidad final (m/s)}$ $\omega = \text{velocidad inicial (m/s)}$ $\alpha = \text{aceleración angular (rad/s^2)}$ x = posición (m)

Rodamientos

$$L_{10} = \left(\frac{C}{P}\right)^a$$

$$L_{10h} = \frac{10^6}{60 \cdot n} L_{10}$$

 L_{10} = vida nominal (millones de revoluciones)

 L_{10h} = vida nominal (horas de funcionamiento)

C = capacidad de carga dinámica (N)

P = carga dinámica equivalente del rodamiento (N)

n = velocidad de giro (rpm)

a = exponente para rodamientos de bolas es 3

y para rodamientos de rodillos es 10/3

60 = constante para el cálculo de la vida nominal de un rodamiento

Tornillos de potencia Roscas cuadradas

Para subir carga

$$T_{u} = \frac{P \cdot d_{p}}{2} \cdot \left(\frac{\mu \cdot \pi \cdot d_{p} + L}{\pi \cdot d_{p} - \mu \cdot L} \right) + \mu_{c} \cdot P \cdot \frac{d_{c}}{2}$$

Para bajar carga

$$T_{d} = \frac{P \cdot d_{p}}{2} \cdot \left(\frac{\mu \cdot \pi \cdot d_{p} - L}{\pi \cdot d_{p} + \mu \cdot L} \right) + \mu_{c} \cdot P \cdot \frac{d_{c}}{2}$$

Roscas Acme

Para subir carga

$$T_{u} = \frac{P \cdot d_{p}}{2} \cdot \left(\frac{\mu \cdot \pi \cdot d_{p} + L \cdot \cos \alpha}{\pi \cdot d_{p} \cdot \cos \alpha - \mu \cdot L} \right) + \mu_{c} \cdot P \cdot \frac{d_{c}}{2}$$

Para bajar carga

$$T_{d} = \frac{P \cdot d_{p}}{2} \cdot \left(\frac{\mu \cdot \pi \cdot d_{p} - L \cdot \cos \alpha}{\pi \cdot d_{p} \cdot \cos \alpha + \mu \cdot L} \right) + \mu_{c} \cdot P \cdot \frac{d_{c}}{2}$$

Rendimiento de un tornillo de potencia

$$\eta = \frac{\cos \theta_n - \mu_1 \tan \alpha}{\cos \theta_n + \mu_1 \cot \alpha}$$

 d_p = diámetro de paso del tornillo (in)

 d_c = diámetro medio del collarín de empuje (in)

L = avance (in)

P = carga a subir o a bajar (lb)

 T_d = par de torsión total para bajar la carga

 T_u = par de torsión total para elevar la carga

 α = ángulo de la rosca Acme (grados)

 μ = coeficiente de fricción entre tornillo y tuerca

 μ_c = coeficiente de fricción en el cojinete de

 η = rendimiento de un tornillo de potencia

 μ = coeficiente de fricción

 θ = ángulo de rosca (grados)

 α = ángulo de hélice (grados)

As = área o sección resistente efectiva (m²)

 d_2 = diámetro primitivo de la rosca (m)

d₃ = diámetro de núcleo de la rosca (m)

Sección efectiva o resistente de un tornillo

$$As = \frac{\pi}{4} \left\lceil \frac{d_2 + d_3}{2} \right\rceil$$

Cuñas

$$\tau = \frac{2 \cdot T}{d \cdot b \cdot L}$$

$$\sigma_c = \frac{4 \cdot T}{d \cdot h \cdot L}$$

 τ = esfuerzo cortante (Pa)

 $T = par torsional (N \cdot m)$

d = diámetro de la flecha (m)

b = base de la cuña o ancho de la cuña (m)

L = longitud de la cuña (m)

 σ_c = esfuerzo de compresión (Pa)

h =altura de la cuña (m)

Longitud de la banda

$$L = \sqrt{4 \cdot C^2 - (D - d)^2} + \frac{1}{2} \cdot (D \cdot \theta_1 + d \cdot \theta_2)$$

$$n = \frac{P_d}{P_n}$$

$$P_d = F \cdot P_t$$

$$P_n = P_{nb} + P_a$$

L = longitud de la banda (m)

C = distancia entre centros (m)

D = diámetro de la polea mayor (m)

d = diámetro de la polea menor (m)

 θ_1 = ángulo de contacto de la polea mayor (grados)

 θ_2 = ángulo de contacto de la polea menor (grados)

n = número de bandas

 P_d = potencia de diseño

 P_n = potencia nominal

F = factor de servicio

 P_t = potencia transmitida

 P_{nb} = potencia nominal básica

P_a = potencia agregada

Recipientes esféricos a presión

Esfuerzos en la superficie exterior

$$\sigma_{\rm 1} = \sigma_{\rm 2} = \frac{p \cdot r}{2 \cdot t} \qquad \qquad \tau_{\rm m\acute{e}x} = \frac{p \cdot r}{4 \cdot t}$$

$$\tau_{max} = \frac{p \cdot r}{4 \cdot t}$$

Esfuerzos en la superficie interior

$$\sigma_1 = \sigma_2 = \frac{p \cdot r}{2 \cdot t} \qquad \sigma_3 = -p$$

$$\sigma_3 = -p$$

$$\tau_{max} = \frac{p}{2} \left(\frac{r}{2 \cdot t} + 1 \right)$$

p = presión (Pa)

r = radio de la esfera (m)

t = espesor de la esfera (m)

 σ_1 = esfuerzo principal 1 (Pa)

 σ_2 = esfuerzo principal 2 (Pa) σ_3 = esfuerzo principal 3 (Pa)

 τ_{max} = esfuerzo cortante máximo (Pa)

Recipientes cilíndricos a presión

Esfuerzos en la superficie exterior

$$\sigma_1 = \frac{p \cdot r}{t}$$

$$\sigma_2 = \frac{p \cdot r}{2 \cdot t}$$

$$\sigma_1 = \frac{p \cdot r}{t}$$
 $\sigma_2 = \frac{p \cdot r}{2 \cdot t}$ $\tau_{max} = \frac{p \cdot r}{2 \cdot t}$

Esfuerzo en la superficie interior

$$\sigma_1 = \frac{p \cdot r}{4}$$

$$\sigma_1 = \frac{p \cdot r}{t}$$
 $\sigma_2 = \frac{p \cdot r}{2 \cdot t}$ $\sigma_3 = -p$

$$\sigma_3 = -p$$

p = presión (Pa)

r = radio del cilindro (m)

t =espesor del cilindro (m)

 σ_1 = esfuerzo principal 1 o circunferencial (Pa)

 σ_2 = esfuerzo principal 2 o longitudinal (Pa)

 τ_{max} = esfuerzo cortante máximo (Pa)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Frenos de banda

 $p_{max} = \frac{2 \cdot P_1}{b \cdot D}$ p_{max} = presión máxima (Pa) b =ancho de la banda (m)

 P_1 = fuerza de tensión en la banda o tensión máxima en la banda (N) $\frac{P_1}{P_2} = \mathbf{e}^{f \cdot \theta}$

D = diámetro del tambor (m)

 P_2 = fuerza floja en la banda o tensión mínima en la banda (N)

 θ = ángulo de contacto entre la banda y el tambor (rad) $T = (P_1 - P_2) \cdot \frac{D}{2}$ *f* = coeficiente de fricción

T = capacidad de frenado o par torsional neto sobre el tambor (N·m)

Soldadura

 $\tau = \frac{F}{H \cdot I}$ τ = esfuerzo cortante promedio (Pa) H = garganta de la soldadura (m)L = longitud de la soldadura (m)

F = fuerza aplicada (N)

Parámetros para el cálculo del consumo de material de aporte, electrodo revestido

Clasificación	asificación Dimensione (mm)		Kilogramo metal depositado por kilogramo de electrodo	Volumen (cm³) depositado		
AVVS	Diámetro	Largo	kilogramo de electrodo	por kilogramo de electrodo		
E 6013	3.25	350	0.60	107		
	4.00	350	0.59	111		
E 7015	3.25	350	0.66	107		
	4.00	450	0.64	111		
E 7018	3.25	450	0.67	107		
	4.00	450	0.68	111		
E FeMn-B	3.25	450	0.62	85		
	4.00	450	0.62	86		
E FeMn-A	3.25	450	0.56	86		
	4.00	460	0.57	86		
E 307-16	3.25	300	0.64	84		
	4.00	350	0.65	84		
E FeCr-A₁	3.25	350	0.65	86		
	4.00	350	0.66	86		

Resortes helicoidales a tensión y compresión

 $k = \frac{d^4 \cdot G}{8 \cdot D^3 \cdot N_a}$ k = constante de rigidez del resorte (N/m)d = diámetro del alambre (m)

D = diámetro medio del resorte (m) $D = D_{\text{ext}} - (2 \cdot d)$ N_a = número de espiras activas

 $F_{s} = k \cdot y_{s}$ G = módulo de corte o de rigidez (Pa) D_{ext} = diámetro exterior del resorte (m)

 $y_s = L_0 - L_s$ F_s = fuerza para comprimir el resorte a su longitud cerrada (N)

 y_s = deformación sólida (m) $L_s = d \cdot N_t$ L_0 = longitud libre (m) L_s = longitud cerrada (m)

 $C = \frac{D_o}{d}$ N_t = número de espiras totales C = índice del resorte y = deflexión (m)

 $k = \frac{F}{V}$ F = carga axial (N)

 $\tau_{m\acute{a}x}$ = esfuerzo cortante máximo (Pa)

 D_o = diámetro de espira (m)

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Vibraciones

$$\omega_n = \sqrt{\frac{k}{m}}$$
 $T = 2 \cdot \pi \cdot \sqrt{\frac{m}{k}}$ $\omega_n = \text{frecuencia natural (Hz)}$ $k = \text{rigidez del resorte (N/m)}$

$$c_{cr} = 2 \cdot \sqrt{km}$$
 $\zeta = \frac{c}{c_{cr}}$ $m = \text{masa (kg)}$ $T = \text{periodo (s)}$

Resortes en paralelo Resortes en serie c_{cr} = amortiguamiento crítico (N·s/m)

$$k_{eq} = \sum_{i=1}^{n} k_i$$
 $\zeta = \text{factor de amortiguamiento}$ $\zeta_{eq} = \frac{1}{\sum_{i=1}^{n} \frac{1}{k_i}}$ $\zeta_{eq} = \text{rigidez equivalente (N/m)}$

Tabla de propiedades mecánicas de los aceros

Nomen	ıclatura	Esfuerzo	a la cedencia (F _y)		mo a la tensión <i>F</i> _u)
NMX	ASTM	MPa	kg/cm²	MPa	kg/cm ²
B-254	A36	250	2 530	400 a 550	4 080 a 5 620
B-99	A529	290	2 950	414 a 585	4 220 a 5 975
B-282	A242	290	2 950	435	4 430
		320	3 235	460	4 710
		345	3 515	485	4 920
B-284	A572	290	2 950	414	4 220
		345	3 515	450	4 570
•••••		414	4 220	515	5 270
		450	4 570	550	5 620
	A992	345	3 515	450 a 620	4 570 a 6 330
B-177	A53	240	2 460	414	4 220
B-199	A500	320	3 235	430	4 360
B-200	A501	250	2 530	400	4 080
	A588	345	3 515	483	4 920
	A913	345 a 483	3 515 a 4 920	448 a 620	4 570 a 6 330

Número SAE/AISI	Estado	fluencia p (0.2% de d	encia a la por tensión leformación anente)	últi	istencia ma a la nsión	Elongación en 2 in	Dureza Brinell
		kpsi	MPa	kp si	MPa	%	
1010	Laminado en caliente	26	180	47	324	28	95
1010	Laminado en frío	44	303	53	365	20	105
1020	Laminado en caliente	30	207	55	379	25	111
1020	Laminado en frío	51	352	61	421	15	121
1030	Laminado en caliente	37.5	259	68	469	20	137
1030	Laminado en frío	64	442	76	524	12	149
1035	Laminado en caliente	39.5	273	72	496	18	143
1035	Laminado en frío	67	462	80	551	12	163
1040	Laminado en caliente	42	290	76	524	18	149
1040	Laminado en frío	71	490	85	586	12	170
1045	Laminado en caliente	45	310	82	565	16	163
1045	Laminado en frío	77	531	91	627	12	179
	Laminado en caliente	49.5	341	90	620	15	179
1050	Laminado en frío	84	579	10 0	690	10	197
1060	Laminado en caliente	70	485	11 8	815	17	241
1060	Normalizado a 900°C (1650°F)	61	420	11 3	775	18	229
4005	Laminado en caliente	83	570	14 0	965	9	293
1095	Normalizado a 900°C (1650°F)	73	505	14 7	1015	9.5	293

Formulario para el sustentante del Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA) Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Número SAE/AISI	Estado	Resistencia a la fluencia por tensión (0.2% de deformación permanente)			istencia ma a la nsión	Elongación en 2 in	Dureza Brinell
		kpsi	MPa	kp si	MPa	%	
4240	Recocido	63	435	10 2	705	25.5	207
1340 4027	Templado y revenido a 650°C (1200°F)	90	621	11 6	800	22	252
	Recocido	47	324	75	517	30	150
4027	Templado y revenido	113	779	13 2	910	12	264
	Recocido a 865°C (1585°F)	52	360	81	560	28.2	156
	Normalizado a 1 650 °F	63	435	97	670	25.5	197
4130	Templado y revenido a 650°C(1200°F)	120	830	14 0	965	22	270
4130	Templado y revenido a 425°C (800 °F)	170	1170	20 0	1380	16.5	375
	Templado y revenido a 205°C (400 °F)	220	1520	25 6	1765	10	475
	Recocido a 815°C (1500° F)	61	420	95	655	25.7	197
4140	Normalizado 870°C (1600° F)	95	655	14 8	1020	17.7	302
	Recocido	60	415	97	665	23	197
6150	Templado y revenido a 650°C (1200°F)	122	841	13 7	945	17	282

SAE HANDBOOK; VOLUMEN 1: PROPIEDADES Y SELECCIÓN, 4: TRATAMIENTOS TÉRMICOS.

Índices de tolerancias en (µm)

maiooo a	0 10.0.	aiioia	J J (1	~··· <i>,</i>											
Medidas nominales (en mm)	IT01	IT0	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13
0 a 3	0.3	0.5	8.0	1.2	2	3	4	6	10	14	25	40	60	100	140
3 a 6	0.4	0.6	1	1.5	2.5	4	5	8	12	18	30	48	75	120	180
6 a 10	0.4	0.6	1	1.5	2.5	4	6	9	15	22	36	58	90	150	220
10 a 18	0.5	0.8	1.2	2	3	5	8	11	18	27	43	70	110	180	270
18 a 30	0.6	1	1.5	2.5	4	6	9	13	21	33	52	84	130	210	330
30 a 50	0.6	1	0.8	2.5	4	7	11	16	25	39	62	100	160	250	390
50 a 80	0.8	1.2	2	3	5	8	13	19	30	46	74	120	190	300	460
80 a 120	1	1.5	2.4	4	6	10	15	22	35	54	87	140	220	350	540
120 a 180	1.2	2	3.5	5	8	12	18	25	40	63	100	160	250	400	630
180 a 250	2	3	4.5	7	10	14	20	29	46	72	115	185	290	460	720
250 a 315	2.5	4	6	8	12	16	23	32	52	81	130	210	320	520	810
315 a 400	3	5	7	9	13	18	25	36	57	89	150	230	360	570	890
400 a 500	4	6	8	10	15	20	27	40	63	97	155	250	400	630	970

Ajustes base agujero en (µm)

Diámetros en (mm)	Н7	s6	r6	n6	k6	j6	h6	g6	f7
, ,	+10	+20	+16	+10	+6	+4	0	-2	-6
d ≤ 3	0	+14	+10	+4	0	-2	-6	-8	-16
3 < d ≤ 6	+12	+27	+23	+16	+9	+6	0	-4	-10
0 14 2 0	0	+19	+15	+8	+1	-2	-8	-12	-22
6 < d ≤ 10	+15	+32	+28	+19	+10	+7	0	-5	-13
10 < d ≤ 14	0 +18	+23 +39	+19 +34	+10 +23	+1 +12	-2 +8	-9 0	-14 -6	-28 -16
10 < d ≤ 14 14 < d ≤ 18	0	+28	+23	+12	+12	-3	-11	-0 -17	-34
18 < d ≤ 24	+21	+48	+41	+28	+15	+9	0	-7	-20
24 < d ≤ 30	0	+35	+28	+15	+13	-4	-13	-7 -20	-20 -41
30 < d ≤ 40	+25	+59	+50	+33	+18	+11	0	-9	-25
40 < d ≤ 50	0	+43	+34	+17	+2	-5	-16	-25	-50
		+72	+60		· -				
50 < d ≤ 65	+30	+53	+41	+39	+21	+12	0	+10	-30
	0	+78	+62	+20	+2	-7	-19	-29	-60
65 < d ≤ 80		+59	+43						
00 400		+91	+73						
80 < d ≤ 100	+35	+71	+51	+45	+25	+13	0	+12	-36
400 - 1 - 400	0	+101	+76	+23	+3	-9	-22	-34	-71
100 < d ≤ 120		+79	+54						
120 < d ≤ 140		+117	+88						
120 1 4 2 1 4 0		+92	+63						
140 < d ≤ 160	+40	+125	+90	+52	+28	+14	0	+14	-43
	. 0	+100	+65	+27	+3	-11	-25	-39	-83
160 < d ≤ 180		+133 +108	+93 +68						
		+151	+106						
180 < d ≤ 200		+122	+77						
000 . 1 . 005	+46	+159	+109	+60	+33	+16	0	-15	-50
200 < d ≤ 225	0	+130	+80	+31	+4	-13	-29	-44	-96
225 < d ≤ 250		+169	+113						
223 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		+140	+84						
250 < d ≤ 280		+190	+126						
	+52	+158	+94	+66	+36	+19	0	-17	-56
280 < d ≤ 315	0	+202	+130	+34	+4	-16	-32	-49	-108
		+170	+98						
315 < d ≤ 355	157	+226 +190	+144 +108	170	+40	.10	0	10	60
	+57 0	+244	+150	+73 +37	+40	+18 -18	0 -36	-18 -54	-62 -119
355 < d ≤ 400		+208	+114						
400		+272	+166						
400 < d ≤ 450	+63	+232	+126	+80	+45	+20	0	-20	-68
450 < d ≤ 500	0	+292	+172	+40	+5	-20	-40	-60	-131
450 \ u ≥ 500		+252	+132						

Formulario para el sustentante del Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA) Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Ajustes base flecha en (µm)

Diámetros en (mm)	h6	G7	F8	h9	F8	E9	D10	C11	h11	A11
d ≤ 3	0	+12	+20	0	+20	+39	+60	+120	0	+330
u = 3	-6	+2	+6	-25	+6	+14	+20	+60	-60	+270
3 < d ≤ 6	0	+16	+28	0	+28	+50	+78	+145	0	+345
	-8	+4	+10	-30	+10	+20	+30	+70	-75	+270
6 < d ≤ 10	0 -9	+20 +5	+35 +13	0 -36	+35 +13	+61 +25	+98 +40	+170 +80	-90	+370 +280
10 < d ≤ 14	0	+24	+43	0	+43	+75	+120	+205	0	+400
14 < d ≤ 18	-11	+6	+16	-43	+16	+32	+50	+95	-110	+290
18 < d ≤ 24	0	+28	+53	0	+53	+92	+149	+240	0	+430
24 < d ≤ 30	-13	+7	+20	-52	+20	+40	+65	+110	-130	+300
30 < d ≤ 40								+280		+470
30 \ U = 40	0	+34	+64	0	+64	+112	+180	+120	0	+310
40 < d ≤ 50	-16	+9	+25	-62	+25	+50	+80	+290	-160	+480 +320
								+130 +330		+520
50 < d ≤ 65	0	+40	+76	0	+76	+134	+220	+140	0	+340
CF 00	-19	+10	+30	-74	+30	+60	+100	+340	400	+550
65 < d ≤ 80								+150	-190	+360
80 < d ≤ 100								+390	0	+600
00	0	+47 +12	+90	0	+90	+159 +72	+260 +120	+170		+380
100 < d ≤ 120	-22		+36	-87	+36		+120	+400 +180	-220	+630 +410
								+450		+719
120 < d ≤ 140								+200		+460
140 <d≤160< td=""><td>0</td><td>+54</td><td>+106</td><td>0</td><td>+106</td><td>+185</td><td>+305</td><td>+460</td><td>0</td><td>+770</td></d≤160<>	0	+54	+106	0	+106	+185	+305	+460	0	+770
140 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-25	+14	+43	-100	+43	+85	+145	+210	-250	+520
160 < d ≤ 180								+480 +430		+830 +580
								+530		+950
180 < d ≤ 200								+240		+660
200 - 4 - 200	0	+61	+122	0	+122	+215	+355	+550	0	+1110
200 < d ≤ 225	-29	+15	+50	-115	+50	+100	+170	+260	-290	+740
225 < d ≤ 250								+570		+1110
								+280		+820
250 < d ≤ 280	0	+69	+137	0	+137	+240	+400	+620 +300	0	+1240 +920
	-32	+17	+56	-130	+56	+110	+190	+650	-320	+1370
280 < d ≤ 315	1							+330		+1050
315 < d ≤ 355								+720		+1560
313 \ u ≥ 333	0	+75	+151	0	+151	+265	+440	+360	0	+1200
355 < d ≤ 400	-36	+18	+62	-140	+62	+125	+210	+760	-360	+1710
								+400		+1350

Diseño de procesos de producción

Procesos de manufactura

Comportamiento mecánico

 $\sigma_r = \frac{F}{A}$ $\varepsilon_r = \ln\left(\frac{I}{I_0}\right)$

$$\sigma = \frac{F}{A_0}$$

$$e = \frac{I_f - I_0}{I_0}$$

 $e = \frac{I_f - I_0}{I_0}$ σ = esfuerzo ingenieril o unitario (Pa) F = fuerza (N) A_0 = área de sección transversal (m²)

e = deformación ingenieril o unitaria (m/m)I_f = longitud final (m)

/= longitud instantánea (m)

 I_0 = longitud inicial (m)

 σ_r = esfuerzo real (Pa)

A = área de sección transversal instantánea (m²)

 \mathcal{E}_r = deformación real longitudinal (m/m)

Comportamiento mecánico en la zona plástica

$$\sigma_{f} = K \cdot \varepsilon_{r}^{n}$$

 σ_f = esfuerzo de fluencia (Pa)

 $\dot{e} = \frac{v}{l}$

K = coeficiente de resistencia (Pa)

n = exponente de endurecimiento por deformación

 \mathcal{E}_r = deformación real longitudinal (m/m)

 $\varepsilon_r = \frac{V}{I}$

e = velocidad de deformación ingenieril (s⁻¹)

v = rapidez de deformación (m/s)

 $\sigma_f = \mathbf{C} \cdot i$

 l_0 = longitud inicial (m) ε_r = velocidad de deformación real (s⁻¹)

 $\sigma' = \frac{2}{\sqrt{3}} \cdot \sigma_f$

/= longitud instantánea (m)

C = coeficiente de resistencia (Pa·s)

m = exponente de sensibilidad a la velocidad de deformación

Y = esfuerzo de fluencia (Pa)

 σ' = esfuerzo de fluencia en deformación plana (Pa)

Procesos de deformación masiva o volumétrica

Forja

Para pieza rectangular:

 $P_{prom} \approx \sigma_f \cdot \left(1 + \frac{\mu \cdot a}{h}\right)$

Para pieza cilíndrica:

 P_{prom} = presión promedio en forja con dado (matriz) abierto (Pa)

 σ' = esfuerzo de fluencia o cedencia en deformación plana (Pa)

 μ = coeficiente de fricción

a = mitad de la longitud de la pieza (m)

h = altura instantánea (m)

Y = esfuerzo de fluencia o cedencia (Pa)

 $P_{prom} = \sigma_f \cdot \pi \cdot r^2 \cdot \left(1 + \frac{2 \cdot \mu \cdot r}{3 \cdot h}\right)$ r = radio (m) F = fuerza de forja con dado (matriz) de impresión (N)

 K_p = factor de incremento de presión:

3 – 5 para formas simples sin rebaba

5 - 8 para formas simples con rebaba

8 – 12 para formas complejas con reborde

 σ_f = esfuerzo de fluencia (Pa)

 $A = \text{área proyectada (m}^2)$

$F = K_n \cdot \sigma_f \cdot A$

Laminación

Para condiciones de baja

fricción:

 $F = L \cdot w \cdot \sigma'$

Para condiciones de alta

fricción:

$$F = L \cdot w \cdot \overline{\sigma}' \cdot \left(1 + \frac{\mu \cdot L}{2h_{prom}} \right)$$

$$\overline{\sigma'} = \frac{2}{\sqrt{3}} \cdot \overline{\sigma}$$

$$\overline{\sigma} = \frac{K \cdot \varepsilon_{r1}^{n}}{n+1}$$

$$L = \sqrt{R \cdot \Delta h}$$

$$P_{rod} = \frac{\pi \cdot F \cdot L \cdot N}{30000} \text{ [kW]}$$

$$P_{rod} = \frac{\pi \cdot F \cdot L \cdot N}{16500}$$
 [HP]

$$R' = R \cdot \left(1 + \frac{C \cdot F'}{h_0 - h_f} \right)$$

F = fuerza de rodillos (N)

L = longitud de contacto (m)

w = ancho del área de contacto (m)

 σ' = esfuerzo de fluencia promedio en deformación plana (Pa)

μ = coeficiente de fricción

 h_{prom} = altura promedio (m)

σ = esfuerzo de fluencia promedio (Pa)

 \mathcal{E}_r = deformación real longitudinal (mm/mm)

 $\Delta h = \text{diferencia entre espesores (m)}$

n = exponente de endurecimiento por deformación

K = constante de resistencia (Pa)

 P_{rod} = potencia por rodillo (kW, HP)

R = radio del rodillo (m)

R' = radio del rodillo distorsionado (m)

C = constante para rodillos:

de acero $2.3 \times 10^{-11} \text{ m}^2/\text{N} (1.6 \times 10^{-7} \text{ in}^2/\text{lb}).$

de hierro colado 4.57 x 10 -11 m²/N

 $(3.15 \times 10^{-7} \text{ in}^2/\text{lb})$

F' = fuerza de rodillo por unidad de ancho de tira, N/m (lb/in)

 h_0 = espesor inicial (m)

 h_f = espesor final (m)

N = velocidad de rotación (rev/min)

Extrusión

$$R = \frac{A_0}{A_{\epsilon}}$$

Para condiciones sin fricción:

$$P = \sigma \cdot \ln(R)$$

Para condiciones con fricción:

$$P = \sigma \cdot \left(1 + \frac{\tan(\alpha)}{\mu}\right) \cdot [R^{\mu \cdot \cot(\alpha)} - 1]$$

R = relación de extrusión

 A_0 = área inicial (m²)

 A_f = área final (m²)

P = presión (Pa)

 σ = esfuerzo de fluencia o cedencia (Pa)

 μ = coeficiente de fricción

 α = ángulo de entrada al dado (°)

Trefilado

Para condiciones sin fricción:

$$\sigma_d = \sigma \cdot \ln \left(\frac{A_0}{A_f} \right)$$

Para condiciones de fricción:

$$\sigma_d = \sigma \cdot \left(1 + \frac{\tan(\alpha)}{\mu} \right) \cdot \left[1 - \left(\frac{A_f}{A_0} \right)^{\mu \cdot \cot(\alpha)} \right]$$

$$P = \sigma_{f} - \sigma$$

 σ_{d} = esfuerzo de trefilado(Pa)

 $_{\sigma}$ = esfuerzo de fluencia o cedencia (Pa)

 A_0 = área inicial (m²)

 A_f = área final (m²)

 $A = \text{área (m}^2)$

μ = coeficiente de fricción

 α = ángulo de entrada al dado (°)

P = presión en el dado (Pa)

 $\sigma_{\rm f}$ = esfuerzo de flujo (Pa)

σ = esfuerzo de tensión (Pa)

Troquelado

 F_t = fuerza necesaria de recorte o perforación (N) $F_{t} = A \cdot K_{s}$ $A = \text{área de corte (m}^2)$ K_s = resistencia al corte del material en (Pa)

Punzonado

F = fuerza de punzonado (N)

L = longitud total cizallada (perímetro del orificio) (m) $F = 0.7 \cdot T \cdot L \cdot \sigma_{max}$

T =espesor de la hoja (m)

 σ_{max} = resistencia a la tensión última (Pa)

Cizallado

F = fuerza de cizallado (kg_f) $F = \frac{t^2 \cdot K_s}{2 \cdot \tan(\alpha)}$ t = espesor de la lámina (mm) K_s = resistencia al corte del material (kg_f/mm²) α = ángulo de cizallado (rad)

Rolado

 $F = \frac{Z \cdot R \cdot U}{r}$ F = fuerza de rolado sobre el rodillo superior (N) R = resistencia de ruptura a tensión del metal (N/m²) $Z = \text{m\'odulo de secci\'on de la placa (m}^3)$ U = relación correspondiente a un valor del ángulo α de 0° a 90°

r = radio del rodillo superior (m)

Doblado

 $L_b = \alpha \cdot (R + k \cdot t)$ L_b = longitud del eje neutro en el área de doblado (m) R = radio de doblado(m) α = ángulo de doblado (rad) k = constante: k = 0.33 si R < 2tk = 0.5 si R > 2tt = espesor de la lámina

Procesos de máquinas-herramientas

Velocidad de corte

N = velocidad de giro (rpm) $N = \frac{1000 \cdot V_c}{\pi \cdot D}$ V_c = velocidad de corte (m/min) D = diámetro de la pieza (mm)

Torneado

 $MRR = v \cdot f \cdot d = \pi \cdot D_{prom} \cdot d \cdot f \cdot N$ MRR = rapidez de remoción de material (mm³/min) v = velocidad de corte (mm/min) $D_{prom} = \frac{D_0 + D_f}{2}$ D_{prom} = diámetro promedio (mm) d = profundidad de corte (mm) $t = \frac{I}{f \cdot N}$ f = avance (mm/rev)N = velocidad de giro (rpm) D_0 = diámetro inicial (mm) $N = \frac{V}{\pi \cdot D_0}$ D_f = diámetro final (mm) t = tiempo de corte (min)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Potencia para corte en torno

 $P = k_s V f D$

/ = longitud del corte (mm)

P = potencia (W)

 k_s = presión de corte (N/m²) V = velocidad de corte (m/s)

f = avance (m/rev)

D = profundidad de corte (m)

Fresado

$$MRR = \frac{I \cdot w \cdot d}{t} = w \cdot d \cdot v$$

 $V = \pi \cdot D \cdot N$

$$f = \frac{v}{N \cdot n}$$

$$t = \frac{I + I_c}{v}$$

w = ancho de corte (mm)

t = tiempo de corte (mm)

D = diámetro de la herramienta (mm)

d = profundidad de corte (mm)

V = velocidad de corte (m/min) v = velocidad de avance (m/min)

N = velocidad de giro (rpm)

f = avance (mm/rev)

n = número de dientes sobre la periferia del cortador

/ = longitud de la pieza (mm)

 I_c = extensión del primer contacto de la pieza con el

cortador (mm)

Taladrado

$$MRR = \frac{\pi \cdot D^2 \cdot f \cdot N}{4}$$

$$t = \frac{d + A}{f \cdot N}$$

$$A = 0.5 \cdot D \cdot \tan(90 - \frac{\theta}{2})$$

D = diámetro de la broca (mm)

f = avance (mm/rev)

N = velocidad de giro (rpm)

t = tiempo de corte (min)

d = profundidad de corte (mm)

A = tolerancia de aproximación (mm)

 θ = ángulo de la punta de la broca (°)

Cepillado

$$G = \frac{7 \cdot V}{I}$$

G = golpes por minuto

V = velocidad de corte (in/min)L = longitud de la pieza (in)

Tabla de golpes por minuto para cepillo

Material	Velocidad de corte (m/min)	Avance por viaje (m)	Velocidad de corte (in/min)	Avance por viaje (in)
Hierro fundido	60	0.000762	2 362	0.030
Acero para maquinaria	70	0.000508	2 756	0.020
Acero tratado para herramienta	50	0.000381	1 969	0.015
Bronce	100	0.001016	3 937	0.040

Resistencia al corte (Ks) para varios metales

Matal	Resistencia al c	orte K _s en MPa
Metal	Dulce	Duro
Acero de bajo carbono:		
0.1%	24	32
0.2%	30	40
0.3%	36	48
0.4%	45	56
0.6%	55	72
0.8% endurecido	70	90
0.1% endurecido	80	105
Acero inoxidable	50	56
Aleación de aluminio:		
Al-Cu-Mg	22	38
Al-Mg-Si	20	30
Al-Mg	14	18
Bronce rolado	32 – 40	40 – 60
Cobre	18 – 40	20 – 30
Estaño	3	4
Zinc	12	20
Plomo	2	3

Tabla de propiedades mecánicas de materiales

	Módulo de	Módulo de	Coeficiente	Módulo de	Módulo de	Coeficiente
	elasticidad,	elasticidad,	de dilatación	elasticidad,	elasticidad,	de dilatación
Material	tensión	cortante	lineal por °C,	tensión	cortante	térmica
	E x 10 ⁹	G x 10 ⁹	α x 10 ⁻⁶	E x 10 ⁶	G x 10 ⁶	lpha x 10 ⁻⁶
	(GPa)	(GPa)		(Mlb/in²)	(Mlb/in²)	(°F ⁻¹)
Acero, alto contenido de	200	80	10.8	30	12	6.0
carbono	200	00	10.0	00	12	0.0
Latón	100	38	18.7	15	6	10.4
Bronce	80	35	18.0	15	6.5	10.0
Cobre extruido	120	38	16.8	17	6	9.3
Carbón PAN HM	2.25	390	0.5-0.7			
Carbón PAN HT	2.7	250	1.0-1.5			
Hierro fundido	92	69	15	15	6	5.9
Aluminio 1xxx	70	25.5	23.1	10	4	13.3
Acero 1018	205	77	10.8			
Diamante	1035	478	1			
Acero	200	80	11.8			
Acero Inoxidable 303	0.620	193	9.3			
Acero AISI 1055	210	80	11.5			
Titanio	106	44	8.6			
Acero inoxidable 431	853	82	12.2			
Nylamyd M	2.76	0.82	90			
Nylamyd 6/6	2.76	0.72	95			

Materiales recomendados en la fabricación de cojinetes.

Deslizamiento sobre acero/hierro fundido

Material de cojinete	Dureza kg/mm²	Dureza mínima de la flecha kg/mm²	Razón de dureza
Babbit sobre base de plomo	15-20	150	8
Babbit sobre base de estaño	20-30	150	6
Plomo endurecido con álcalis	22-26	200-250	9
Cobre-plomo	20-23	300	14
Plata (electrodepositada)	25-5	300	8
Base de cadmio	30-50	200-250	6
Aleación de aluminio	45-50	300	6
Bronce con plomo	40-80	300	5
Bronce al estaño	60-80	300-400	5

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Recomendaciones generales para operaciones de torneado

Materiales de	gener			de propósito	Intervalo para rectificado y acabado				
la pieza de trabajo	Herramienta de corte	Profundidad de corte, mm (in)	Avance, mm/rev (in/rev)	Velocidad de corte, m/min (ft/min)	Profundidad de corte, mm (in)	Avance, mm/rev (in/rev)	Velocidad de corte, m/min (ft/min)		
	Carburo sin	1.5-6.3	0.35	90	0.05-7.6	0.15-1.1	60-135		
	recubrimiento	(0.06-0.25)	(0.014)	(300)	(0.02-0.30)	(0.006-0.045)	(200-450)		
	Carburo con recubrimiento de cerámico	*	*	245-275 (800-900)	*	*	120-425 (400-1400)		
Acabado de bajo carbono	Carburo con triple recubrimiento	*	*	185-200 (350-500)	*	*	90-245 (300-800)		
y de libre maquinado	Carburo con recubrimiento de TiN	*	*	105-150 (350-500)	*	*	60-230 (200-750)		
	Cerámico de Al ₂ O ₃	*	0.25 (0.010)	395-440 (1300-1450)	*	*	365-550 (1200-1800)		
	Cermet	*	0.30 (0.012)	215-290 (700-950)	*	*	105-455 (350-1500)		
	Carburo sin	1.2-4.0	0.30	75	2.5-7.6	0.15-0.75	45-120		
	recubrimiento	(0.05-0.20)	0.012	(250)	(0.10-0.30)	(0.006-0.03)	(150-400)		
	Carburo con recubrimiento de cerámico	*	*	*	*	*	120-410 (400-1350)		
Aceros de medio y alto	Carburo con triple recubrimiento	*	*	*	*	*	75-215 (250-700)		
carbono	Carburo con recubrimiento de TiN	*	*	*	*	*	45-215 (150-700)		
	Cerámico de Al ₂ O ₃	*	0.25 (0.010)	335 (1100)	*	*	245-455 (800-1500)		
	Cermet	*	0.25 (0.010)	170-245 (550-800)	*	*	105-305 (350-1000)		
	Carburo sin recubrimiento	1.25-6.3 (0.05-0.25)	0.32 (0.013)	90 (300)	0.4-12.7 (0.015-0.5)	0.1-0.75 (0.004-0.03)	75-185 (250-600)		
Fundición de hierro gris	Carburo con recubrimiento de cerámico	*	*	200 (650)	*	*	60-125 (200-700)		
	Carburo con recubrimiento de TiN	*	*	90-135 (300-450)	*	*	365-855 (1200-2800)		
	Cerámico de Al ₂ O ₃	*	0.25 (0.010)	455-490 (1500-1600)	*	*	365-855 (1200-2800)		
	Cerámico de SiN	*	0.32 (0.013)	730 (2400)	*	*	200-990 (650-3250		

Velocidades de corte típicas, ángulos de corte v avances recomendados

Material	Útil	Útil Ángulos de corte			Desbastado			Afinado		
		alfa	beta	gama	Vc	s	а	Vc	s	а
Acero menos de 50 kg/mm ²	WS	8°	62°	20°	14	0.5	0.5	20	0.2	0.1
-	SS	6°	65°	19°	22	1	1	30	0.5	0.1
	HS	5°	67°	18°	150	2.5	2	250	0.25	0.15
Acero 50-70 kg/mm ²	WS	8°	68°	14°	10	0.5	0.5	15	0.2	0.1
-	SS	6°	70°	14°	20	1	1	24	0.5	0.1
	HS	5°	71°	14°	120	2.5	2	200	0.25	0.15
Acero 70-85 kg/mm ²	WS	8°	74°	8°	8	0.5	0.5	12	0.2	0.1
-	SS	6°	72°	12°	15	1	1	20	0.5	0.1
	HS	5°	71°	14°	80	2.5	2	140	0.25	0.15
Acero de herramientas	WS	6°	81°	3°	6	0.5	0.3	8	0.2	0.1
	SS	6°	82°	2°	12	1	0.8	16	0.5	0.1
	HS	5°	83°	2°	30	0.6	0.5	30	0.15	0.1

Material	Útil	Ángulos de corte		Desbastado			Afinado			
		alfa	beta	gama	Vc	s	а	Vc	s	а
Aluminio	WS									
	SS	10°	65°	25°	60	4	3	120	0.5	0.1
	HS									

Control numérico por computadora

Código	ico por computadora Descripción
M00	Paro de programa
M01	Paro opcional de programa
M02	Fin de programa
IVIUZ	
M03	Encendido del husillo en sentido de las manecillas del reloj (CW) S = velocidad del husillo en rpm
	Encendido del husillo en sentido contrario a las manecillas del reloj (CCW)
M04	S = velocidad del husillo en rpm
NOT	
M05	Apagado del husillo
M06	Cambio de herramienta
	T = número de herramienta
M08	Encendido del refrigerante
M09	Apagado del refrigerante
M30	Fin de programa con cursor al inicio de programa
G00	Interpolación lineal rápida
G01	Interpolación lineal a la velocidad programada
G02	Movimiento circular en el sentido horario
G03	Movimiento circular en el sentido antihorario
G04	Compás de espera
G10	Ajuste del valor de offset del programa
G20	Comienzo de uso de unidades imperiales (pulgadas)
G21	Comienzo de uso de unidades métricas
G28	Volver al home de la máquina
G32	Maquinar una rosca en una pasada
G36	Compensación automática de herramienta en X
G37	Compensación automática de herramienta en Z
G40	Cancelación de compensación de diámetro
	Compensación a la izquierda
G41	D = número de registro o diámetro del cortador
	Compensación a la derecha
G42	D = número de registro o diámetro del cortador
	Compensación de altura
G43	H = número de registro
G49	Cancelación de compensación de altura
G54-G59	Selección de sistema de coordenadas (punto cero)
G70	Ciclo de acabado
G71	Ciclo de maquinado en torneado
G72	Ciclo de maquinado en refrentado
G73	Repetición de patrón
G74	Taladrado intermitente, con salida para retirar virutas
G76	Maquinar una rosca en múltiples pasadas
G80	Cancelación de ciclo de taladrado
	Ciclo de taladrado con pausa
	X, Y = posición del aquiero
G82	Z = profundidad del agujero
002	R = plano de retracción
	P = pausa
	Ciclo de taladrado profundo
	X, Y = posición del agujero
	Z = profundidad del agujero
G83	R = plano de retracción
	D = profundidad por picoteo
	Q = distancia de seguridad
G90	Coordenadas absolutas
·	Coordenadas incrementales
G91 G94	
<u>G94</u>	Velocidad de avance en unidades/minuto (para fresa)

Código	Descripción
G95	Velocidad de avance en unidades/revolución (para fresa)
G96	Comienzo de desbaste a velocidad tangencial constante (para torno)
G97	Fin de desbaste a velocidad tangencial constante (para torno)
G98	Retorno al plano de acercamiento en ciclos (para fresa)
G99	Retorno al plano de retracción en ciclos (para fresa)
G98	Velocidad de avance en unidades/minuto (para torno)
G99	Velocidad de avance en unidades/revolución (para torno)

Software utilizados en Ingeniería Mecánica, Mecánica Eléctrica, Electromecánica y afines

Nombre	Descripción
Actran, SPICE, TINA	Son programas para la simulación de la acústica, vibro acústica, acústica y aerodinámica.
Adams	Es un software de simulación de la dinámica de mecanismos, sistemas multicuerpo y de análisis de movimiento. Ayuda a estudiar la dinámica de las partes móviles, como las cargas y las fuerzas se distribuyen a lo largo de los sistemas mecánicos, y a mejorar y optimizar el rendimiento de sus productos. Es un programa de análisis cinemático y dinámico para simulación de sistemas mecánicos.
ALGOR	Conjunto de herramientas para un variado campo de análisis mecánico o estructural, basado en el método del elemento finito (FEA). Se basa en el estudio de esfuerzos y deformaciones, como resultado de la aplicación de cargas estáticas, presiones o desplazamientos conocidos aplicados a la estructura o temperaturas que generaran tensiones térmicas. El extender de vibraciones añade al módulo estático de Algor las posibilidades de análisis de modos propios (frecuencias naturales), análisis transitorio por superposición modal para bajas frecuencias, análisis transitorio por integración directa para altas frecuencias, y el análisis de espectro de respuesta (sísmico) y DDAM para el cálculo de tensiones originado por fuerzas repentinas (terremotos o explosiones, por ejemplo). También se incluyen en el extender el análisis de pandeo para vigas o vigas/placas, análisis modal con fuerzas rigidizadoras, vibración aleatoria (power spectral density) y respuesta en frecuencia para predecir las respuestas ante funciones de onda simples.
ANSYS	Es un procesador de elemento finito para la solución de problemas mecánicos incluye: análisis de estructuras dinámicas y estáticas (ambas para problemas lineales y no-lineales), análisis de transferencia de calor y fluido dinámico, y también problemas de acústicas y de electromagnetismo. Este software es usado también en ingeniería civil y eléctrica, física y química.
AutoCAD	Es un software de diseño asistido por computadora para dibujo en dos y tres dimensiones, tiene un amplio uso en diseño gráfico y dibujo técnico digital en general.
Autodesk Inventor	Es un modelador paramétrico; esto es, permite modelar la geometría, dimensión y material de manera que si se alteran las dimensiones, la geometría se actualiza automáticamente basándose en las nuevas dimensiones. Se basan en bocetos (dibujos en 2D) y después utilizaría una herramienta del programa para dar altura y volumen.
CATIA	Es un programa que trata de una solución para la Gestión del Ciclo de vida del Producto (PLM, Product Lifecycle Management), que proporciona un conjunto integrado de aplicaciones de Diseño Asistido por computadora (CAD, Computer Aided Design), Ingeniería Asistida por computadora (CAE, Computer Aided Engineering), Fabricación Asistida por computadora (CAM, Computer Aided Manufacturing) simulaciones de movimiento y análisis por FEM, para la definición y simulación de productos digitales.
COMSOL	COMSOL Multiphysics es un paquete de software de análisis y resolución por elementos finitos para varias aplicaciones físicas y de ingeniería, especialmente fenómenos acoplados, o multifísicos. COMSOL Multiphysics también ofrece una amplia y bien gestionada interfaz a MATLAB y sus toolboxes que proporcionan una amplia variedad de posibilidades de programación, preprocesado y posprocesado. También proporciona una interfaz similar a COMSOL Script. Además de las interfaces de usuario convencionales basadas en físicas, COMSOL Multiphysics también permite entrar sistemas acoplados de ecuaciones en derivadas parciales (EDP).
DELMIA	Es un software de optimización de toma de decisiones que permite, aumentar las cadenas de suministro a nivel mundial mientras aumenta el nivel de calidad, reaccionar inmediatamente ante una interrupción en la cadena de suministro con el fin de cumplir los objetivos de rendimiento, reducir los costos de producción relacionados con los inventarios y la repetición de tareas y crear un nivel superior de productividad y seguridad
EES	Engineering Equation Solver (EES) es un paquete de software comercial utilizado para la solución de sistemas de ecuaciones no lineales simultáneas. Proporciona muchas funciones y ecuaciones especializados útiles para la solución de la termodinámica y los problemas de transferencia de calor, por lo que es un programa útil y ampliamente utilizado para los ingenieros mecánicos que trabajan en estos campos. Almacena EES propiedades termodinámicas, lo que elimina la solución de problema iterativo a mano mediante el uso de código que llama propiedades a las propiedades termodinámicas especificados.

Nombre	Descripción
HyperMesh	Es un programa para los procesos previos de elementos finitos, incluye diversos algoritmos para tetraedro, hexaedro, "flujo de malla", malla de superficie media. Además incluye la capacidad para ver los elementos en una dimensión como objetos 3D, para verificar de forma visual la información de modelado de precisión, que los modelos de elementos finitos sean modelados a la perfección o que "encajen" con una superficie o con un grupo de nodos.
Maple	Maple es un programa matemático de propósito general capaz de realizar cálculos simbólicos, algebraicos y de álgebra computacional.
Mathcad	Mathcad es un programa algebraico de computadora, distribuido por PTC. En comparación a otros software como Scilab y MATLAB, MathCad es menos poderoso y no permite aprovechar el hardware. Su filosofía es que es un programa más de documentación que de cálculo, aunque también es potente en este ámbito, es muy visual y permite el uso de plantillas de funciones en las que solo es necesario escribir los valores deseados, incluso para graficar funciones.
MATLAB	És un entorno de programación que permite el desarrollo de algoritmos, análisis de datos, visualización, y computación numérica. Se usa en una gran variedad de aplicaciones como pruebas y mediciones, control dinámico y optimización.
NX Nastran o NX UNIGRAPHICS	Software que presenta varios módulos de trabajo como diseño mecánico con su simulación de movimiento y análisis por FEM, diseño de sistemas electromecánicos que incluye la simulación para modos de fallo primarios correspondientes a temperatura, vibración, polvo o humedad. Además proporciona información visual y análisis de alta definición en tecnología 3D (HD3D) para recopilar datos PLM al instante; aplicaciones para diseñar utillajes, moldes, troqueles y accesorios precisos; simulación de mecanizado para programar máquinas-herramienta; gestión de procesos de ingeniería para obtener información sobre ingeniería de productos y procesos integrada a la perfección con CAD, CAM y CAE; simulación multidisciplinar para la preparación de modelos, resolución de problemas y posprocesamiento.
Pro/ENGINEER	Es un software de diseño paramétrico usado en diseño mecánico, que permite el análisis de esfuerzos y creación de archivos CAM. Permite el modelado de superficies, de sólidos, de montaje, la animación, el intercambio de datos con otros CAD, hacer dibujos y documentación de diseño, cálculo del PLM y administración de la producción.
Simulink	Es un entorno de programación visual que funciona sobre el entorno de programación de MATLAB que se usa para la simulación y el diseño basado en modelos de sistemas dinámicos y embebidos.
Solid Edge	Es un sistema parametrizado que contiene herramientas para eliminar los errores de diseño y reducir así el tiempo de desarrollo y los costes. Se crean prototipos virtuales en 3D de los productos y se aprovecha el conocimiento con el que se consigue un proceso de ingeniería preciso y sin errores. Puede emplearse para operaciones específicas para el proceso de modelado de la industria de los plásticos, gestión de datos de conjunto desde las primeras fases de planificación del proyecto hasta los ciclos de revisión, fabricación, mantenimiento del proyecto y archivado, verificación visual del movimiento en un ensamble o verificación de interferencias en todo el rango de movimiento. En el diseño de ensamblajes, admite tanto la técnica "top-down" como "bottom-up", permite dividir las tareas de diseño entre los miembros del equipo, presentar los subensamblajes a medida que se terminan y garantizar un producto final homogéneo. Permite la simulación de desplazamientos complejos, detección de interferencias y creación de animaciones de un ensamblaje con facilidad y precisión, además puede realizar análisis con elementos finitos. Puede compartir los datos de diseño y colaborar: SmartView, WebPublisher.
SolidWorks	Permite el modelado en 3D, la validación (simulación o análisis CAE o FEM), así como administración de datos de los producto o datos de ingeniería, y la documentación de productos, tal como creación de manuales, instructivos y guías, entre otros. Provee herramientas para: Modelar productos de plástico, lámina, estructurales, moldes, componentes mecánicos, tuberías, cableados, manufactura de plásticos, simulación cinemática del funcionamiento y de accionamientos mecánicos obteniendo velocidades, aceleraciones, torques y potencias, por mencionar algunos.

Índice RIME o ICGM

 $I = M \cdot T$

I = índice Rime O ICGMM = código máquinaT = código trabajo

Calidad

Tiempo de ciclo

$$t_c = \frac{t_d}{U_p} \qquad U = \frac{P_R}{C_D} \cdot 100$$

$$ET = \frac{\sum_{i=1}^{n} \text{tiempo de la tarea } i}{\text{tiempo del ciclo}}$$

 t_c = tiempo de ciclo t_d = tiempo disponible

 U_p = unidades por procesar U = porcentaje de utilización

 P_R = producción real C_D = capacidad diseñada

ET = número de estaciones de trabajo

Modelo de tamaño del lote económico básico (EOQ)

$$Q' = \sqrt{\frac{2 \cdot D \cdot S}{H}}$$

Q´ = tamaño de lote económico

D = demanda anual

S = costo promedio de hacer un pedido de material *H* = costo de almacenar una unidad en el inventario

Eficiencia en el trabajo

$$\varepsilon = \frac{P_R}{C_e}$$

$$i_m = \frac{t_m}{L}$$

 ε = eficiencia en el trabajo P_R = producción real C_e = capacidad efectiva

 i_m = índice de utilización de la máquina

 t_m = tiempo de marcha t_u = tiempo utilizable

Número de ciclos por observar

$$n = \frac{\mathbf{s} \cdot t^2}{k \cdot \mathbf{x}}$$

n = número de ciclos a observar
t = valor en tabla "t Student"
s = desviación estándar
k = porcentaje de error
x = tiempo medio

Correlación

$$r_{XY} = \frac{\sum (X \cdot Y)}{N} - (\overline{X} \Box \overline{Y})$$

$$S_X \cdot S_Y$$

$$S_X = \sqrt{\frac{\sum X^2}{N} - \overline{X}^2}$$

$$S_Y = \sqrt{\frac{\sum Y^2}{N} - \overline{Y}^2}$$

r_{XY} = coeficiente de correlación S_X = desviación estándar de X S_Y = desviación estándar de Y

 $ar{X}$ = media de X $ar{Y}$ = media de Y N = número de datos

Error estándar de la producción

$$\sigma_p = \sqrt{\frac{p \cdot q}{n}}$$

 σ_p = error estándar

p = porcentaje de tiempo inactivo q = porcentaje de tiempo en marcha

n = número de observaciones o tamaño de la muestra

Pronóstico (suavización exponencial)

$$F_t = \alpha \cdot (A_{t-1} + (1-\alpha)) \cdot F_{t-1}$$

 F_t = pronóstico para el periodo t F_{t-1} = pronóstico para el periodo t-1 A_{t-1} = valor real del periodo t-1

 α = constante de suavización de 0 a 1

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Balanceo de líneas

 t_c = tiempo de ciclo t_p = tiempo de producción por día P = producción por día $N = \frac{\sum t}{t_c}$ N = número de estaciones t = tiempo de la tarea E = eficiencia N_r = número real de estaciones de trabajo t_e = tiempo de ciclo de la estación de trabajo

Inventarios

CT = costo total anual $CT = DC + \frac{D}{Q}S + \frac{Q}{2}H$ D = demanda (anual)C= costo por unidad

Q = volumen de la orden (cantidad óptima) S = costo por preparación o por colocar una orden

L = tiempo de entrega

H = costo anual de mantener y almacenar una unidad del inventario promedio

Punto de reorden

 $\sigma_d = \sqrt{\frac{\sum_{i=1}^n (d_i - \bar{d})^2}{n}}$

 $\sigma_{s} = \sqrt{\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{2}^{2} + \dots + \sigma_{r}^{2}}$

R = punto de reorden $R = L \cdot D$ D = demanda diaria promedio L = tiempo de entrega en días

Punto de reorden considerando existencia de seguridad

R = punto de reorden D = demanda diaria promedio $R = D \cdot L + z \cdot \sigma_{i}$ L = tiempo de entrega en días $D = \frac{\sum_{i=1}^{n} d_i}{n} \qquad \sigma_L = \sqrt{\sum_{i=1}^{L} \sigma_{d_i}^2}$

z = número de desviaciones estándar para una probabilidad específica de servicio

 σ_i = desviación estándar de uso durante el tiempo de

n = número de díasd = demanda diaria

 σ_d = desviación estándar de la demanda a lo largo de un periodo de n días

 σ_s = desviación estándar de una serie de demandas independientes

Cantidad óptima de la orden en un periodo fijo

 $q = D \cdot (T + L) + z \cdot \sigma_{T+I} - I$ q = punto de reordenD = demanda diaria promedio $\sigma_{T+L} = \sqrt{\sum_{i=1}^{T+L} \sigma_{d_i}^2}$ T = cantidad de días entre revisiones L = tiempo de entrega en días

> z = número de desviaciones estándar para una probabilidad específica de servicio

 σ_{T+L} = desviación estándar de la demanda entre

revisiones y tiempo de entrega

I = nivel corriente del inventario

Punto de equilibrio

PE = punto de equilibrio, en términos de unidades $PE = \frac{CFT}{P - CV}$ vendidas CFT = costos fijos totales CV = costo variable unitario P = precio unitario del producto

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Estadística descriptiva Para datos no agrupados

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$M_{\rm e} = X_{\left(\frac{n+1}{2}\right)}$$

para *n* impar

$$M_{e} = \frac{X_{(n/2)} + X_{(n+1/2)}}{2}$$
 para *n* par

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

Para datos agrupados

$$\overline{X} = \frac{\sum_{i=1}^{n} (X_i \cdot f_i)}{\sum_{i=1}^{n} (f_i)}$$

$$M_{e} = L_{i} + \left(\frac{\frac{n}{2} - f_{i-1}}{f_{i}}\right) \cdot c$$

$$M_o = L_i + \left(\frac{D_1}{D_1 + D_2}\right) \cdot \mathbf{c}$$
 $M_o = \text{moda}$ $S_x^2 = \text{varianza para una muestra}$ $\sigma_x^2 = \text{varianza para una población}$ $D_1 = f_i - f_{i-1}$ $D_2 = f_i - f_{i+1}$

$$D_1 = f_i - f_{i-1}$$
 $D_2 = f_i - f_{i+1}$

$$\mathbf{S}_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left[(\mathbf{X}_{i} - \overline{\mathbf{X}})^{2} \cdot \mathbf{f}_{i} \right] \qquad \qquad \sigma_{x}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[(\mathbf{X}_{i} - \mu)^{2} \cdot \mathbf{f}_{i} \right]$$

 \overline{X} = media aritmética

 X_i = valores de la variable X (datos de la muestra)

n = número de datos

 M_e = Mediana

 $s_x^2 =$ varianza para una muestra $\sigma_x^2 =$ varianza para una población

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2$$

 \overline{X} = media aritmética

 X_i = valores de la variable X (datos de la muestra)

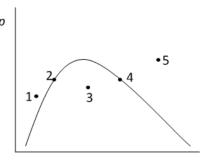
 f_i = frecuencia del intervalo

 f_{i-1} = frecuencia premodal

 f_{i+1} = frecuencia posmodal

c = intervalo o marca de clase

n = número de datos


 M_e = mediana

 $M_o = \text{moda}$

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} \left[(X_i - \mu)^2 \cdot f_i \right]$$

Sistemas energéticos

Propiedades de las sustancias

Curva de saturación del agua en coordenadas (p-v) se definen los puntos

- 1. Líquido comprimido
- 2. Líquido saturado
- 3. Coexistencia de líquido y vapor saturados
- 4. Vapor saturado
- 5. Vapor sobrecalentado

Para el punto 3 se calcula:

$$V = V_f + X(V_a - V_f)$$

$$h = h_f + x (h_g - h_f)$$

$$s = s_f + x(s_g - s_f)$$

$$u = u_f + x \left(u_\alpha - u_f \right)$$

x = calidad del vapor

f = propiedad del líquido saturado

g = propiedad del vapor saturado

 $v = \text{volumen específico (m}^3/\text{kg})$

h = entalpía específica (kJ/kg)

 $s = \text{entrop}(a \text{ espec}(\text{fica}(kJ/kg\cdot K))$

u = energ(a interna espec(f) ica(kJ/kg))

Ecuaciones de potencia y eficiencia

$$P = F \cdot V$$

$$W = \frac{W}{m}$$

$$\eta = \frac{P_{\text{salida}}}{P_{\text{entrada}}}$$

$$P_h = \gamma \cdot Q \cdot H$$

$$P = T\omega$$

$$Q = A \cdot v$$

$$p=\frac{F}{A}$$

$$P_{e} = V \cdot I$$

$$P_{3\varphi} = \sqrt{3}V_{LL}I_{L}\cos\varphi$$

$$Z_F = \sqrt{R^2 + X^2}$$

$$V_F = \frac{V_L}{\sqrt{3}}$$

P = potencia (W)

 P_h = potencia hidráulica (W)

P_e = potencia eléctrica (W)

 $P_{3\omega}$ = potencia activa en un sistema trifásico (W)

F = fuerza(N)

 $A = \text{área } (m^2)$

m = masa (kg)

v = velocidad (m/s)

p = presión (Pa)

w = trabajo por unidad de masa (kJ/kg)

W = trabajo (kJ)

 η = eficiencia

 γ = peso específico del fluido (γ_{H_2O} = 9 807 N/m³)

Q = flujo o gasto volumétrico (m³/s)

H = altura (m)

T = par N-m

 ω = velocidad angular (rad/s)

V = tensión (voltaje) (V)

 V_{LL} = tensión (voltaje) de línea a línea (V)

 V_F = tensión (voltaje) de fase (V)

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

$$I_F = \frac{I_L}{Z_F}$$

$$f.p. = \cos \varphi = \frac{R}{Z_F} = \frac{P_{\varphi}}{S_{\varphi}}$$

$$f.p. = \cos \varphi = \text{factor de potencia}$$

$$I = corriente(A)$$

$$I_L = I_F = \text{corriente de línea a línea (A)}$$

$$R$$
 = resistencia (Ω)

$$X$$
 = reactancia (Ω)

$$Z_F$$
 = Impedancia de fase (Ω)

$$P_{\varphi}$$
 = potencia activa monofásica (W)

$$S_{\varphi}$$
 = potencia aparente monofásica (VA)

Ecuación de potencia eólica (hélice de aerogeneradores)

$$P_{\rm e} = \frac{1}{2} \eta \rho A v^3$$

$$P_e$$
 = potencial eólico (W)

 η = eficiencia

 ρ = densidad del aire (kg/m³)

 $A = \text{área de la hélice (m}^2)$

v = velocidad del viento (m/s)

Ecuaciones para bombas

$$P_b = (v_1(p_2 - p_1) * \frac{m}{\eta})$$

$$\frac{P_1}{P_2} = \left(\frac{D_1}{D_2}\right)^3$$

$$\frac{H_1}{H_2} = \left(\frac{N_1}{N_2}\right)^2$$

 P_b = potencia requerida por la bomba (kW)

P₁ = potencia de la bomba en el punto 1

 P_2 = potencia de la bomba en el punto 2

 V_1 = volumen específico (m³/kg)

 η = eficiencia

 p_1 = presión inicial (Pa)

 p_2 = presión final (Pa)

 D_1 = diámetro de la bomba en el punto 1

 D_2 = diámetro de la bomba en el punto 2

 H_1 = carga de altura 1 (N·m/N)

 H_2 = carga de altura 2 (N·m/N)

 N_1 = rpm de la bomba en el punto 1

 N_2 = rpm de la bomba en el punto 2

 \dot{m} = flujo másico (kg/s)

Ecuaciones para cálculo de compresores

$$W_{e} = (\frac{k}{k-1}) * RT_{1} * (1 - (\frac{p_{2}}{p_{1}})^{(\frac{k-1}{k})})$$

$$W_s = C_p(T_2 - T_1)$$

$$q_{a} = W_{a} - W_{s}$$

 W_e = trabajo de entrada (kJ/kg)

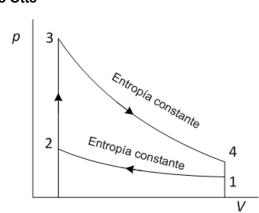
 W_s = trabajo de salida (kJ/kg)

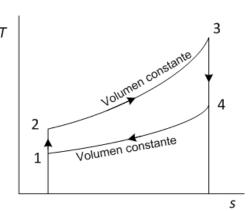
 q_s = calor de entrada (kJ/kg)

 p_1 = presión inicial (kPa)

 p_2 = presión final (kPa)

 T_1 = temperatura constante (K)


 C_0 = calor específico a presión constante (kJ/(kg·K))


R = constante de los gases ideales (kJ/(kmol·K))

k = coeficiente adiabático (isentrópico)

Ciclos termodinámicos

Ciclo Otto

$$\begin{split} Q_{ent} &= Q_{23} = C_v \left(T_3 - T_2 \right) \\ Q_{sal} &= Q_{41} = C_v \left(T_4 - T_1 \right) \\ \eta_t &= \frac{W_{neto}}{Q_{ent}} = \frac{Q_{ent} - Q_{sal}}{Q_{ent}} = 1 - \frac{Q_{sal}}{Q_{ent}} \end{split}$$

Para los procesos isentrópicos 1-2 y 3-4

$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{K-1}$$

$$\frac{T_4}{T_3} = \left(\frac{V_3}{V_4}\right)^{K-1} = \left(\frac{V_2}{V_1}\right)^{K-1}$$

$$k = \frac{C_P}{C_V}$$

Eficiencia del ciclo Otto en función de la relación de compresión (r_c)

$$\eta_t = 1 - \frac{1}{r_c^{k-1}} \qquad \qquad r_c = \frac{V}{V}$$

 C_P = calor específico a presión constante (kJ/kg·K)

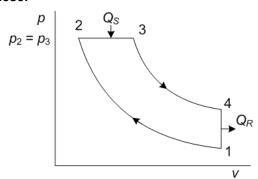
 C_V = calor específico a volumen constante (kJ/kg·K)

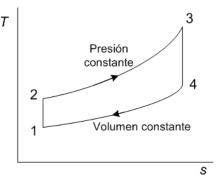
Q_{ent} = calor de entrada (kJ/kg)

 Q_{sal} = calor de entrada (kJ/kg)

 η_t = eficiencia térmica

 W_{neto} = trabajo neto (kJ/kg)


k = relación de calores específicos


 r_c = relación de compresión

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Ciclo Diesel

$$Q_{ent} = Q_{32} = C_p (T_3 - T_2)$$

 $Q_{sal} = Q_{41} = C_v (T_4 - T_1)$

 $W_{neto} = Q_{ent} - Q_{sal}$

Para los procesos de compresión y expansión isentrópicos

$$\frac{T_{2}}{T_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{k-1} \quad \frac{T_{4}}{T_{3}} = \left(\frac{V_{3}}{V_{4}}\right)^{k-1}
\eta_{t} = \frac{W_{neto}}{Q_{ent}} \qquad \eta_{t} = 1 - \frac{T_{4} - T_{1}}{k(T_{3} - T_{2})}
r_{c} = \frac{V_{1}}{V_{2}} = \frac{\upsilon_{1}}{\upsilon_{2}} \qquad r_{f} = \frac{V_{3}}{V_{2}} = \frac{\upsilon_{3}}{\upsilon_{2}}$$

$$\eta_t = 1 - \frac{1}{r_c^{k-1}} \left[\frac{r}{k(r_f - 1)} \right]$$

$$pme = \frac{W_{neto}}{V_{max} - V_{min}} = \frac{W_{neto}}{V_1 - V_2}$$

$$\begin{split} &\frac{r_2}{T_1} = \left\lfloor \frac{v_1}{V_2} \right\rfloor & \frac{r_4}{T_3} = \left\lfloor \frac{v_3}{V_4} \right\rfloor \\ &\eta_t = \frac{W_{neto}}{Q_{ent}} & \eta_t \\ &r_c = \frac{V_1}{V_2} = \frac{v_1}{v_2} & r_f \\ &\eta_t = 1 - \frac{1}{r_c^{k-1}} \left[\frac{r_f^k - 1}{k(r_f - 1)} \right] \\ &pme = \frac{W_{neto}}{V_{m\acute{a}x} - V_{m\acute{i}n}} = \frac{W_{neto}}{V_1 - V_2} \\ &m = \frac{P_1 V_1 M}{R T_1} \end{split}$$

 Q_{ent} = calor de entrada (kJ/kg)

 Q_{sal} = calor de salida (kJ/kg)

 C_P = calor específico a presión constante (kJ/kg·K)

 C_V = calor específico a volumen constante (kJ/kg·K)

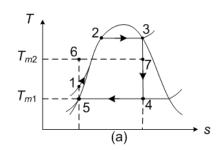
 r_c = relación de compresión

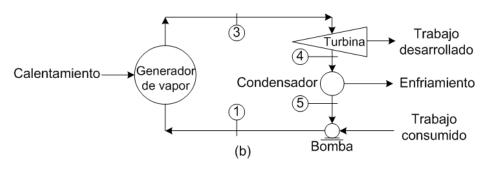
 r_f = relación de fin de la inyección

υ = volumen específico (m³/kg)

pme = presión media efectiva (kPa)

 η_t = eficiencia


 $R = 8.314 \text{ kJ/kgmol} \cdot \text{K o } 8.314 \text{ kPa m}^3/\text{kgmol K}$


M = masa molecular del fluido (kg/kgmol)

k = relación de calores específicos

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Ciclo Rankine simple

$$Q_{ent} = h_3 - h_1$$
$$Q_{sal} = h_4 - h_5$$

$$W_{T} = h_{3} - h_{4}$$

$$W_b = h_1 - h_5 \approx V_5 (p_1 - p_5)$$

$$W_{neto} = W_{T} - W_{b}$$

$$\eta_t = \frac{W_{neto}}{Q_{ent}}$$

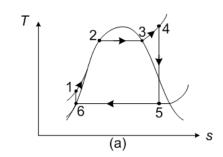
$$C_{e} = \frac{3600}{W_{neto}} \left[\frac{kg}{kWh} \right]$$

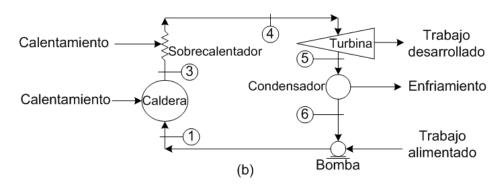
$$C_{\rm e} = \frac{3412}{W_{\rm neto}} \left[\frac{\rm lb_{\rm m}}{\rm kWh} \right]$$

Q_{ent} =calor de entrada en el generador (kJ/kg)

Q_{sal} =calor de salida en el condensador (kJ/kg)

 W_T = trabajo en la turbina (kJ/kg)


 W_b = trabajo en la bomba (kJ/kg)


 W_{neto} = trabajo neto (kJ/kg)

 η_t = eficiencia térmica

C_e = consumo específico

Ciclo Rankine con sobrecalentamiento

$$\begin{aligned} & Q_{ent} = h_4 - h_1 \\ & Q_{sal} = h_5 - h_6 \\ & W_T = h_4 - h_5 \\ & W_b = h_1 - h_6 \approx V_6 \left(p_1 - p_6 \right) \end{aligned}$$

 Q_{ent} = calor de entrada en el generador (kJ/kg) Q_{sal} = calor de salida en el condensador (kJ/kg) W_T = trabajo en la turbina (kJ/kg)

 W_{T} = trabajo en la turbina (kJ/kg) W_{b} = trabajo en la bomba (kJ/kg)

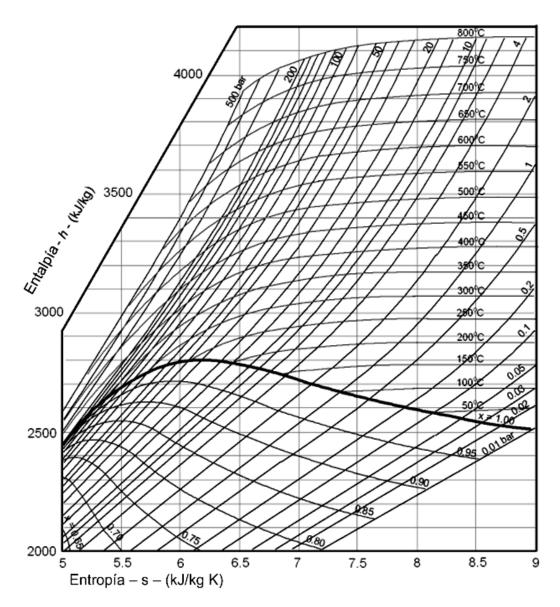
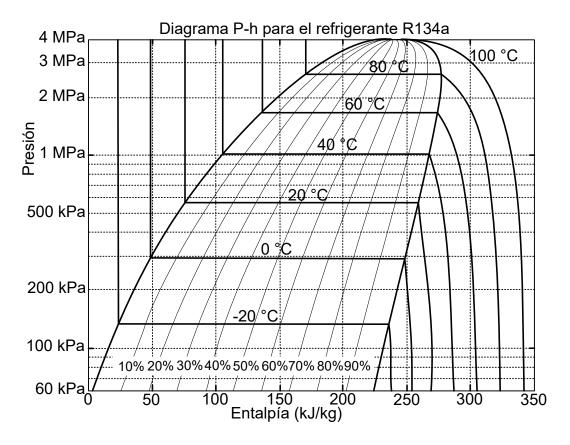
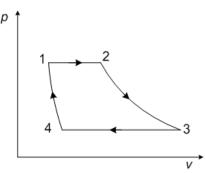
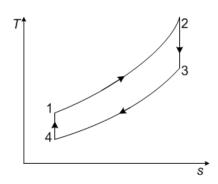



Diagrama de Mollier para el agua

Tabla de agua saturada

T (°C)	P (kPa)	v _f (m³/kg)	V _g (m³/kg)	h _f (kJ/kg)	h _g (kJ/kg)	u _f (kJ/kg)	u _g (kJ/kg)	s _f (kJ/kg·K)	s _g (kJ/kg·K)
10	1.228	0.001	106.3	41.99	2388	41.99	2519	0.151	8.899
20	2.339	0.001002	57.78	83.83	2402	83.84	2537	0.2962	8.665
30	4.246	0.001004	32.9	125.7	2416	125.7	2555	0.4365	8.451
40	7.381	0.001008	19.53	167.5	2429	167.5	2573	0.5723	8.255
50	12.34	0.001012	12.04	209.3	2443	209.3	2591	0.7037	8.075
60	19.93	0.001017	7.674	251.1	2456	251.2	2609	0.8312	7.908
70	31.18	0.001023	5.045	293	2469	293	2626	0.9549	7.754
80	47.37	0.001029	3.409	334.9	2482	334.9	2643	1.075	7.611
90	70.12	0.001036	2.362	376.9	2494	376.9	2660	1.193	7.478
100	101.3	0.001043	1.674	419	2506	419.1	2676	1.307	7.354
110	143.2	0.001052	1.211	461.2	2518	461.3	2691	1.419	7.239
120	198.5	0.00106	0.8922	503.6	2529	503.8	2706	1.528	7.13
130	270	0.00107	0.6687	546.1	2540	546.4	2720	1.635	7.027
140	361.2	0.00108	0.509	588.9	2550	589.2	2734	1.739	6.93
150	475.7	0.00109	0.3929	631.8	2559	632.3	2746	1.842	6.838
160	617.7	0.001102	0.3071	675	2568	675.7	2758	1.943	6.75
170	791.5	0.001114	0.2428	718.4	2576	719.3	2768	2.042	6.666
180	1002	0.001127	0.194	762.1	2583	763.2	2778	2.14	6.585
190	1254	0.001141	0.1565	806.2	2590	807.6	2786	2.236	6.507
200	1554	0.001156	0.1273	850.6	2595	852.4	2793	2.331	6.431
210	1906	0.001173	0.1044	895.4	2599	897.7	2798	2.425	6.357
220	2318	0.00119	0.08616	940.7	2602	943.5	2801	2.518	6.285
230	2795	0.001209	0.07155	986.6	2603	990	2803	2.61	6.213
240	3345	0.001229	0.05974	1033	2603	1037	2803	2.701	6.142
250	3974	0.001251	0.05011	1080	2602	1085	2801	2.793	6.072
260	4689	0.001276	0.04219	1128	2598	1134	2796	2.884	6.001
270	5500	0.001303	0.03564	1177	2593	1185	2789	2.975	5.929
280	6413	0.001332	0.03016	1228	2586	1236	2779	3.067	5.857
290	7438	0.001366	0.02556	1279	2576	1289	2766	3.159	5.782
300	8584	0.001404	0.02167	1332	2563	1344	2749	3.253	5.704
310	9861	0.001447	0.01834	1387	2546	1401	2727	3.349	5.623
320	11279	0.001498	0.01548	1444	2525	1461	2700	3.448	5.536
330	12852	0.00156	0.01298	1505	2498	1525	2665	3.55	5.441
340	14594	0.001637	0.01079	1570	2464	1594	2621	3.659	5.335
350	16521	0.00174	0.008812	1642	2418	1670	2563	3.777	5.21
360	18655	0.001894	0.006962	1726	2352	1761	2482	3.915	5.054
370	21030	0.002207	0.004993	1843	2235	1890	2340	4.109	4.81


Fuente: http://frionline.net/articulos-tecnicos/200-refrigerante-r134a-en-sistemas-frigorificos-comerciales-de-poca-potencia.html


Tabla de aire como gas ideal

T (K)	h (kJ/kg)	p _r	u (kJ/kg)	Vr	s° (kJ/kg⋅K)
200	199.97	0.3363	142.56	1707	129.559
220	219.97	0.469	156.82	1346	139.105
240	240.02	0.6355	171.13	1084	147.824
260	260.09	0.8405	185.45	887.8	155.848
270	270.11	0.959	192.6	808	159.634
280	280.13	10.889	199.75	738	163.279
285	285.14	11.584	203.33	706.1	165.055
290	290.16	12.311	206.91	676.1	166.802
295	295.17	13.068	210.49	647.9	168.515
300	300.19	1.386	214.07	621.2	170.203
320	320.29	17.375	228.42	528.6	17.669
340	340.42	2.149	242.82	454.1	18.279
360	360.58	2.626	257.24	393.4	188.543
380	380.77	3.176	271.69	343.4	194.001
400	400.98	3.806	286.16	301.6	199.194
420	421.26	4.522	300.69	266.6	204.142
440	441.61	5.332	315.3	236.8	20.887
460	462.02	6.245	329.97	211.4	213.407
480	482.49	7.268	344.7	189.5	21.776
500	503.02	8.411	359.49	170.6	221.952
520	523.63	9.684	374.36	154.1	225.997
540	544.35	11.1	389.34	139.7	229.906
560	565.17	12.66	404.42	127	233.685
580	586.04	14.38	419.55	115.7	237.348
600	607.02	16.28	434.78	105.8	240.902
620	628.07	18.36	450.09	96.92	244.356
640	649.22	20.64	465.5	88.99	247.716
660	670.47	23.13	481.01	81.89	250.985
680	691.82	25.85	496.62	75.5	254.175
700	713.27	28.8	512.33	69.76	257.277
720	734.82	32.02	528.14	64.53	260.319
740	756.44	35.5	544.02	59.82	26.328
760	778.18	39.27	560.01	55.54	266.176
780	800.03	43.35	576.12	51.64	269.013
800	821.95	47.75	592.3	48.08	271.787
820	843.98	52.59	608.59	44.84	274.504
840	866.08	57.6	624.95	41.85	27.717

T	h	p _r	u ""	V _r	s°
(K)	(kJ/kg)	00.00	(kJ/kg)	00.40	(kJ/kg·K)
860	888.27	63.09	641.4	39.12	279.783
880	910.56	68.98	657.95	36.61	282.344
900	932.93	75.29	674.58	34.31	284.856
920	955.38	82.05	691.28	32.18	287.324
940	977.92	89.28	708.08	30.22	289.748
960	1000.55	97	725.02	28.4	292.128
980	1023.25	105.2	741.98	26.73	294.468
1000	1046.04	114	758.94	25.17	29.677
1020	1068.89	123.4	776.1	23.72	299.034
1040	1091.85	133.3	793.36	23.29	30.126
1060	1114.86	143.9	810.62	21.14	303.449
1080	1137.89	155.2	827.88	19.98	305.608
1100	1161.07	167.1	845.33	18.896	307.732
1120	1184.28	179.7	862.79	17.886	309.825
1140	1207.57	193.1	880.35	16.946	311.883
1160	1230.92	207.2	897.91	16.064	313.916
1180	1254.34	222.2	915.57	15.241	315.916
1200	1277.79	238	933.33	14.47	317.888
1220	1301.31	254.7	951.09	13.747	319.834
1240	1324.93	272.3	968.95	13.069	321.751
1260	1348.55	290.8	986.9	12.435	323.638
1280	1372.24	310.4	1004.76	11.835	32.551
1300	1395.97	330.9	1022.82	11.275	327.345
1320	1419.76	352.5	1040.88	10.747	32.916
1340	1443.6	375.3	1058.94	10.247	330.959
1360	1467.49	399.1	1077.1	9.78	332.724
1380	1491.44	424.2	1095.26	9.337	334.474
1400	1515.42	450.5	1113.52	8.919	3.362
1420	1539.44	478	1131.77	8.526	337.901
1440	1563.51	506.9	1150.13	8.153	339.586
1460	1587.63	537.1	1168.49	7.801	341.247
1480	1611.79	568.8	1186.95	7.468	342.892
1500	1635.97	601.9	1205.41	7.152	344.516
1520	1660.23	636.5	1223.87	6.854	34.612
1540	1684.51	672.8	1242.43	6.569	347.712
1560	1708.82	710.5	1260.99	6.301	349.276
1580	1733.17	750	1279.65	6.046	350.829
					, , , , , , , , , , , , , , , , , , ,

Ciclo Brayton

$$\begin{aligned} \mathbf{Q}_{ent} &= \mathbf{C}_{p} \left(\mathbf{T}_{2} - \mathbf{T}_{1} \right) \\ \mathbf{Q}_{sal} &= \mathbf{C}_{p} \left(\mathbf{T}_{3} - \mathbf{T}_{4} \right) \end{aligned}$$

$$\eta_t = 1 - \frac{T_3 - T_4}{T_2 - T_1}$$

Para los procesos isentrópicos:

$$\frac{T_2}{T_3} = \left(\frac{p_2}{p_3}\right)^{\frac{k-1}{k}}; \quad \frac{T_1}{T_4} = \left(\frac{p_1}{p_4}\right)^{\frac{k-1}{k}}$$

$$\eta_t = 1 - \frac{T_4}{T_1} = 1 - \frac{T_3}{T_2} = 1 - \frac{1}{\frac{k-1}{k}}$$

$$r_{p} = \frac{p_{1}}{p_{4}} = \frac{p_{2}}{p_{3}}$$

$$W_{neto} = C_P \left(T_2 - T_1 \right) - C_P \left(T_3 - T_4 \right)$$

$$W_{neto} = C_P \left(T_2 - T_3 \right) - C_P \left(T_1 - T_4 \right)$$

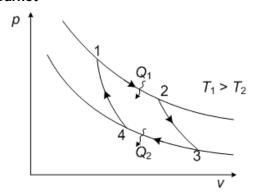
Q_{ent} =calor de entrada en el generador (kJ/kg)

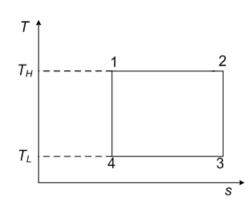
Q_{sal} =calor de salida en el condensador (kJ/kg)

 η_t = eficiencia térmica

rp = relación de presiones

 \dot{W}_{neto} = trabajo neto durante el ciclo (kJ/kg)


 C_P = calor específico a presión constante (kJ/kg·K)


 C_V = calor específico a volumen Constante (kJ/kg·K)

k = relación de calores específicos

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Ciclo Carnot

$$\eta_t = 1 - \frac{T_4}{T_1} = 1 - \frac{T_3}{T_2}$$

$$r_p = \frac{p_1}{p_4} = \frac{p_2}{p_3}$$

$$pme = \frac{W_{neto}}{V_3 - V_1}$$

 r_p = relación de presiones

 η_t = eficiencia térmica

pme = presión media efectiva (kPa)

Conducción en estado estable en elemento con generación de calor

$$\frac{2(T - T_W)}{\frac{L^2}{K}}$$
 Paredes planas

 $\frac{A(T - T_w)}{r_*^2}$ Cilindros

 $\frac{6(T - T_w)}{\frac{r_e^2}{V}} \quad \text{Esferas solidas}$

; = generación interna de calor (W/m³)

 T_c = temperatura máxima de la pared y/o cilindro (°C) T_w = temperatura en ambas caras de la pared (°C)

r_e = radio del cilindro o esfera

Calor transferido por convección, conducción y radiación

 $q = h \cdot A(T - T_{\infty})$ convección

 $q = k \cdot A(T - T_{\infty})$ conducción

 $q = r \cdot A(T - T_{\infty})$ radiación

 $q = -kA \left(\frac{dT}{dx} \hat{i} + \frac{dT}{dy} \hat{j} + \frac{dT}{dz} \hat{k} \right)$ conducción

 $q = \varepsilon \sigma A (T_1^4 - T_2^4)$ radiación

 $q = U \cdot A(T - T_{\infty})$ varios mecanismos de transferencia de calor

 $U = \frac{1}{R}$

q = generación interna de calor (W)

h = coeficiente de transferencia de calor por

convección $\left(\frac{W}{m^2 \cdot K}\right)$

k = coeficiente de transferencia de calor por

conducción $\left(\frac{W}{m \cdot K}\right)$

r = coeficiente de transferencia de calor por radiación

 $\left(\frac{W}{m^2 \cdot K}\right)$

A =área perpendicular al flujo de calor (m^2)

T = temperatura sobre la superficie del cuerpo (°C)

U = coeficiente global de transferencia de calor

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

$$R = \frac{1}{h} + \frac{e_1}{k_1} + \frac{e_2}{k_2} + \dots + \frac{e_n}{k_n} + \frac{1}{h_n}$$

$$\left(\frac{W}{m^2 \cdot K}\right)$$

R = resistencia global al paso de calor $\left(\frac{m^2 \cdot K}{W}\right)$

 T_{∞} = temperatura del medio ambiente (°C)

e = espesor (m)

 \mathcal{E} = emisividad

 σ = constante de Stefan-Boltzmann

$$= \left(5.667 \times 10^{-8} \ \frac{W}{m^2 K^4}\right)$$

Conducción de calor en estado transitorio

$$q = \rho \cdot C \cdot V \frac{dT}{dt}$$

$$\frac{T - T_{\alpha}}{T_{\alpha} - T_{\alpha}} = e^{\frac{-kA}{\rho \cdot C \cdot V}\tau}$$

$$\tau = \frac{\rho \cdot \mathbf{C} \cdot \mathbf{V}}{hA}$$

Temperatura media logarítmica

Intercambiadores de calor

$$T_m = \frac{T_{m\acute{a}x} - T_{m\acute{i}n}}{\ln\!\left(\frac{T_{m\acute{a}x}}{T_{m\acute{i}n}}\right)}$$

$$T_{m\acute{a}x} = T_{h2} - T_{c2}$$

$$T_{m\acute{i}n} = T_{h1} - T_{c1}$$

Conversión de escalas de temperatura

$$T(^{\circ}C) = \frac{5}{9}[T(^{\circ}F) - 32]$$

$$T(^{\circ}F) = \frac{9}{5}(^{\circ}C) + 32$$

Relación de escala

$$T_{ABS}(K) = T(^{\circ}C) + 273.15$$

$$T_{ABS}(R) = T(^{\circ}F) + 459.67$$

q = generación interna de calor (W)

h = coeficiente de transferencia de calor por

convección
$$\left(\frac{W}{m^2 \cdot K}\right)$$

A = área perpendicular al flujo de calor (m²)

 ρ = densidad del material (kg/m²)

C = calor específico del material $\left(\frac{J}{kg \cdot K}\right)$

 $V = \text{volumen del cuerpo (m}^3)$

T = temperatura final del cuerpo (°C)

 T_{∞} = temperatura del medio ambiente (°C)

 T_o = temperatura inicial del cuerpo (°C)

t = tiempo(s)

 τ = constante de tiempo del sistema (s)

 T_m = temperatura media logarítmica (°C)

 $T_{m\acute{a}x}$ = temperatura máxima (°C)

 T_{min} = temperatura mínima (°C)

In = logaritmo natural

 T_{h1} y T_{c1} = temperatura caliente y fría del fluido 1

Th2 y Tc2 = temperatura caliente y fría del fluido 2

Propiedades y comportamiento de los fluidos Densidad absoluta para líquidos

 $\rho = \frac{m}{V}$ a 4 °C: $\rho_{H_2O} = 1000 \frac{kg}{m^3} \qquad \rho_{H_2O} = 133.53 \frac{oz}{galón}$ $\rho_{H_2O} = 62.43 \frac{lb}{ft^3} \qquad \rho_{H_2O} = 0.04 \frac{lb}{in^3}$ $\rho_{H_2O} = 1.94 \frac{slug}{ft^3}$

ho = densidad (kg/m³) m = masa del fluido (kg) V = volumen del fluido (m³) A = área (m²) v = velocidad (m/s) y = espesor (m) μ = viscosidad absoluta (Pa s) τ = esfuerzo cortante del fluido (Pa) v = viscosidad cinemática (m²/s)

 $p = \text{presión (N/m}^2 \text{ o Pa)}$

F = fuerza(N)

Viscosidad absoluta

$$\mu = \tau \frac{y}{v} \ \tau = \frac{F}{A} = \mu \frac{dv}{dy}$$

Viscosidad cinemática

$$\upsilon = \frac{\mu}{\rho}$$

Presión

$$p=\frac{F}{A}$$

Conversión

1 slug = 32.174 lb = 14.5439 kg $1 \text{ ft}^3 = 0.0283 \text{ m}^3 = 28.3 \text{ L}$ 1 atm = presión atmosférica = 760 torr = 760 mm Ha= 1.013 bar= 10.33 mca (metros columna de agua) = 101.325 kPa = 14.69 psi $= 2116 \text{ lb/ft}^2$ = 29.92 in Hg= 33.91 pca (pies columna de agua) 1 cP (centiPoise) = 10⁻² P (Poise) 1 cP (centiPoise) = 10⁻³ Pa·s 1 P (Poise) = 100 cP = 1 g/cm s = 0.1 Pa s1 ct (centistoke) = 10^{-2} st (stoke) $1 \text{ ct} = 10^{-6} \text{ m}^2/\text{s}$ 1 t (stoke) = 1 Dina/1 Poise = 1 cm 2 /s 2 = 0.0001 m 2 /s

Estática de fluidos

$$\gamma = \frac{W}{V} = \frac{mg}{V} = \rho g$$
$$p = \gamma \cdot h = \rho g h$$

Principio de Pascal

$$\frac{f}{a} = \frac{F}{A}$$

Pérdidas de carga

$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$
 régimen turbulento

$$\left(\frac{p}{\gamma} + \frac{v^2}{2g} + Z\right)_{IN} = \left(\frac{p}{\gamma} + \frac{v^2}{2g} + Z\right)_{OUT} + h_F - h_B + h_T$$

$$f = \frac{64}{\text{Re}}$$
 régimen laminar

$$f = \frac{0.316}{\text{Re}^{0.25}}$$
 régimen turbulento liso

$$f = \frac{0.25}{\left[\log\left(\frac{e/D}{3.7} + \frac{5.74}{\text{Re}^{0.9}}\right)\right]^2}$$
 régimen turbulento rugoso

 γ = peso específico (N/m³)

W = peso(N)

 $V = \text{volumen (m}^3)$

 $p = \text{presión hidrostática (N/m}^2 \text{ o Pa)}$

 ρ = densidad (kg/m³)

g = aceleración de la gravedad (m/s²)

h = altura (m)

f = fuerza aplicada en el émbolo menor (N)

a =área del émbolo menor (m^2)

F = fuerza obtenida en el émbolo mayor (N)

A =área del émbolo mayor (m^2)

 h_f = pérdidas de carga (m)

f = coeficiente de fricción

D = diámetro de la tubería (m)

L = longitud de la tubería (m)

v = velocidad (m/s)

 $v^2/2g$ = altura de velocidad (m)

Z =altura geodésica (m)

p = presión (Pa)

 $\frac{p}{\gamma}$ = altura de presión (m)

 h_F = pérdidas hidráulicas por fricción en tuberías y accesorios (m)

 h_B = altura proporcionada por la bomba (m)

 h_T = altura absorbida por la turbina (m)

e = coeficiente de rugosidad

Re = número de Reynolds

Mecánica de fluidos

$$V_1A_1 = V_2A_2$$

 $M = V \rho$
 $V_2 = N\sqrt{Q} / H^{3/4}$
 $V_2 = DH^{1/4} / \sqrt{Q}$
1 in H₂O = 248.8 Pa
 $V_2 = K(V/2q)$

$$V_1A_1 = V_2A_2$$
 = ecuación de continuidad . m = flujo másico (kg/s) Ns = velocidad específica (m/s) Q = caudal (m³/s) H = altura o carga hidráulica (m) (ft) n = revoluciones por minuto (rpm) Ds = diámetro específico (m) H_L = pérdida de energía (m) K = coeficiente de resistencia V = velocidad del fluido (m/s) g = gravedad (m/s²)

Formulario para el sustentante del

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arguitectura

 $C_t = n_p \cdot d_h$ C_t = capacidad del tinaco $N_p = r_e \cdot 2 + 1$ n_p = número de personas d_h = dotación por habitante N_p = número de personas

 r_e = recámaras

 $C_c = d_t \cdot r d_t = N_p \cdot d_h$ C_c = capacidad de la cisterna

 $r = d_t$ d_t = dotación total r = reserva

 rd_t = reserva dotación total

 d_h = dotación por habitante N_p = número de personas

r_e = recámaras

 $hp = \frac{8.3 \left[\frac{gal}{\text{min}}\right] \cdot H}{33000}$ Sistema Inglés $\frac{gal}{\min}$ = galones por minuto G = gasto (L/min)

H =altura o carga hidráulica (m) (ft) $hp = \frac{9.575 \cdot G \cdot H}{33000}$ Sistema Internacional

C = capacidad de la tubería (L) $C = (2.9727d^2L)/231$

 $V = \sqrt{((2\ 500 \cdot H \cdot D)/13.9L)}$ V = velocidad en tuberías (ft/s) D = diámetro de la tubería (in)

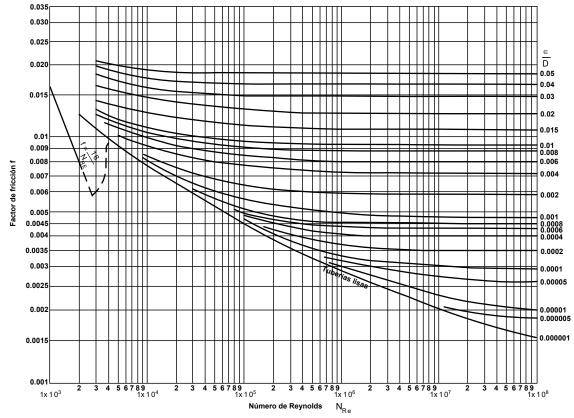
H = carga de agua arriba del centro de la tubería (ft)

L = longitud de la tubería (in)

T = capacidad del tanque hidroneumático Cm = ciclos de trabajo de la bomba cada hora Pu = capacidad de la bomba en (L/min)

W = abatimiento del agua del tanque en %

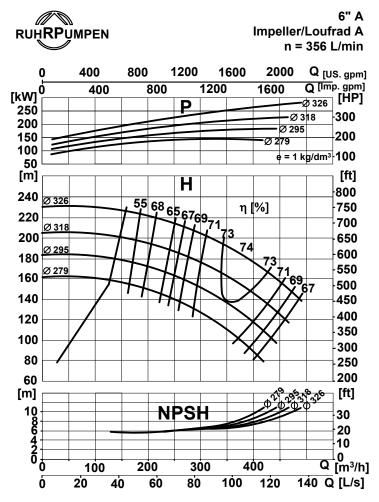
pV = mRTEcuación de estado para gases ideales


 $p = \rho R T$ p = presión (Pa) $R = 8 314.3 \text{ J/(kmol \cdot K)}$

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Proceso (magnitud	Relación Trabajo (p/unid. mas			Calor (p/unid.	Diagrama	Diagrama
constante) (expon.) (politr.)	estados 1 y 2	discontinuo $W_c 1,2 = \int_1^2 p dv$	continuo $W_c 1,2 = \int_1^2 v dp$	masa) <i>q</i> _{1,2}	p – v	T – s
Isométrico v = constante $n = \infty$ (o 37)	$\frac{P_2}{P_1} = \frac{T_2}{T_1}$	0	$V(p_1 - p_2)$ = $R(T_1 - T_2)$	$c_v (T_2 - T_1)$	p 2 2 1 1 v	7 02 1 s
Isobárico p = constante n = 0 (o 38)	$\frac{V_2}{V_1} = \frac{T_2}{T_1}$	$p(v_2 - v_1)$ = $R(T_2 - T_1)$	0	$c_p (T_2 - T_1)$	ph 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 2 s
Isotérmico T = constante n = 1 (o 39)	$\frac{P_2}{P_1} = \frac{V_1}{V_2}$	$R T \ln \left(\frac{V_2}{V_1}\right)$ $=R T \ln \left(\frac{P_1}{P_2}\right)$	$W_{1,2}$	W _{1,2}	p 1 2 2 v	7 1 2 1 s
Isentrópico s = constante n = k (o 40)	$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^k$ $\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{k}{k-1}}$ $\frac{V_2}{V_1} = \left(\frac{T_1}{T_2}\right)^{\frac{1}{k-1}}$	$u_2 - u_1 = c_u(T_1 - T_2)$ $= \frac{1}{k-1} R T_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} \right]$	$h_2 - h_1 = c_p(T_1 - T_2)$ $= \frac{k}{k-1} R T_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{k-1}{k}} \right]$	0	PA 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$ \begin{array}{c c} T_{A} & 1 \\ 2 \\ \end{array} $ s
Politrópico (cualquiera) n = constante (o 41)	$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^n$ $\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}}$ $\frac{V_2}{V_1} = \left(\frac{T_1}{T_2}\right)^{\frac{1}{n-1}}$	$\frac{1}{n-1} R (T_1 - T_2)$ $= \frac{1}{n-1} R T_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} \right]$	$\frac{n}{n-1} R (T_1 - T_2)$ $= \frac{n}{n-1} R T_1 \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} \right]$	$C_{\nu_{n-1}}^{n-k}\left(T_{2}-T_{1}\right)$	Indefinido	Indefinido

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura


Diagrama de Moody

Fuente: L.F. Moody. Trans. ASME, Vol. 66, 1944

Tabla: características de los motores comerciales de inducción de jaula de ardilla de acuerdo con la clasificación en letras NEMA.

Clase NEMA	Par de arranque (# de veces el nominal)	Corriente de arranque	Regulación de velocidad (%)	Nombre de clase del motor
Α	1.5-1.75	5-7	2-4	Normal
В	1.4-1.6	4.5-5	3.5	De propósito general
С	2-2.5	3.5-5	4-5	De doble jaula alto par
D	2.5-3.0	3-8	5-8, 8-13	De alto par alta resistencia
l F	1.25	2-4	mavor de 5	De doble iaula, baio par v baia corriente de arrangue

Curva de funcionamiento para una bomba de barril para alimentación (Cortesía de RUHRPUMPEN)

Símbolos de acuerdo con NMX-J-136-ANCE-2007

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Circuito (conductor o tubo) confinado entecho o pared		Circuitos (conductor o tubo). Las líneas inclinadas indican número de conductores	—#— —# —#
Ensamble de conductores que se conectan	+	Ensamble de conductores que no se conectan	
Conexión puesta a tierra	<u></u>	Interruptor	

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Interruptor termomagnético (automático)		Arrancador (con protección contrasobrecarga)	A
Arrancador a tensión plena	7	Arrancador a tensión reducida	
Fusible		Acometida	—M→ ———————————————————————————————————
Receptáculos sencillo	\oslash	Receptáculo doble	Ø
Receptáculo trifásico		Interruptor sencillo	⊗
Receptáculo de piso		Receptáculo de puesta a tierra	②
Interruptor de un polo	€ s	Interruptor de 3 polos	S_3
Salida de lámpara incandescente	X	Resistencia	-//\-
Capacitancia		Devanado	مهی
Motor	M_{\circ}	Transformador con dos devanados	ىلىر سىرىسى
Transformador con tres devanados	m,	Autotransformador	All
Transformador de potencial	\rightarrow	Voltímetro	V
Amperímetro	A	Zumbador	
Tablero eléctrico general		Tablero de distribución general	
Tablero de distribución de alumbrado		Medio de desconexión	

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Interruptor de seguridad		Apartarrayos	→
Transformador de corriente	\$	Equipo de medición	M o
Grupo generador	∞	Interruptor de seguridad (desconectador de seguridad)	-\x
Barra de neutro	N	Barra de puesta a tierra	Т

Símbolos de acuerdo con EN-60617 o IEC 60617

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Empalme de conductores en una misma línea		Unifilar 3 circuitos	3
Unifilar 3 conductores		Regletero de bornes de conexión	
Punto de conexión entre conectores	•	Borne de conexión	0
Representación de la toma de tierra	<u></u>	Tierra de protección	
Masa, chasis	<i>→ →</i>	Caja de empalme	
Falla	ly .	Convertidor, símbolo general	-
Interruptor normalmente abierto		Interruptor normalmente cerrado	1
Contacto principal de cierre de un contactor		Seccionador	
Pulsador normalmente cerrados	F -	Pulsador normalmente abierto	
Trinquete, retén o retorno no automático.		Enclavamiento mecánico entre dos dispositivos	

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Accionador manual, símbolo general		Accionador manual protegido contra una operación no intencionada	
Pulsador con retención	F-_\	Interruptor bipolar	-
Accionamiento por efecto electromagnético		Accionamiento por dispositivo térmico	<u> </u>
Bobina de un relevador	\vdash	Conexión retardada al desactivar el mando	
Conexión retardada al activar el mando		Mando de un relevador electrónico	
Relevador térmico	quitar poner	Relevador de protección electromagnético	quitar poner
Relé de máxima intensidad		Relevador de máxima tensión	U>
Bobina en general de relés, contactores y otros dispositivos de mando		Contactor y contactos principales	A1 1 3 5 7 A A A A A A A A A A A A A A A A A A
Contacto auxiliar de cierre autoaccionado por un relé térmico		Interruptor automático tripolar	
Relevador térmico	1 3 5 95 97	Fusible	
Fusible interruptor		Sirena	$\overline{\uparrow}$

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Lámpara símbolo general	-	Zumbador	Y
Voltímetro	V	Amperímetro	A
Resistencia	———	Capacitor	
Bobina	<u></u>		
Clavija de enchufe		Arrancador de motor	
Clavija y receptáculo		Toma de corriente múltiple	3
Motor de corriente continua	M ==	Motor de inducción trifásico de Jaula de ardilla	M 3~
Generador no rotativo	G	Generador síncrono trifásico, con inducido en estrella y neutro accesible	GS Y
Transformador de tres arrollamientos. Unifilar		Transformador de tres arrollamientos. Desarrollada	m m
Transformador trifásico, conexión estrella- triángulo. Unifilar	Y (4)	Transformador trifásico, conexión estrella- triángulo. Desarrollada	
Transformador de corriente. Unifilar	ф #	Transformador de corriente. Desarrollada	

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Pararrayos	+	Seccionador de dos posiciones con posición intermedia	→ —
Rectificador	==	Ondulador, inversor	
Arrancador estrella-delta		Arrancado por autotransformador	\ <u>\</u>

Símbolos de acuerdo a la ANSI

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Conductor		Conductores no conectados	
Conductores conectados	-	Terminal del conductor	0
Representación de la toma de tierra	4-	Bloqueo mecánico	
Conexión mecánica		Voltímetro	
Amperímetro	—(AM)—	Lámpara piloto	A
Capacitor		Resistencia	RES
Bobinas	~~ · ~~	Relevador de sobrecarga térmico	\$ +
Relevador de sobrecarga magnético	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Contacto de empuje normalmente abierto	 0
Contacto de empuje normalmente	مـلـه	Contacto de empuje doble	مله
cerrado		doble	0 0

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Contactos instantáneos, normalmente abierto	<u> </u>	Contactos instantáneos, normalmente cerrado	<u> </u>
Desconectador		Interruptor	
Interruptor con protección térmica	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	Fusible	‡ ζ
Transformador de corriente	M	Transformador de voltaje simple	H1 H2
Transformador de voltaje doble	H ₁ H ₃ H ₂ H ₄ H ₄ X ₂ X ₁	Motor de corriente alterna monofásico	T1 T2
Motor de corriente alterna trifásico	T1 T2 T3	Zumbador	
Tomacorriente sencillo		Tomacorriente doble	1 →2

Fórmulas para calcular el consumo eléctrico y el cálculo del kW-h

 $P_{C} = P_{D} \cdot t$

 $C = P_C \cdot Pr$

 P_C = potencia consumida (kW-h)

 P_D = potencia demandada (kw)

t = tiempo (h)

C = costo de la potencia consumida

 P_r = precio \$/kW-h

Sistemas de control analógicos y digitales

Ingeniería de control

$$\frac{C(s)}{R(s)} = \frac{k}{\tau s + 1}$$

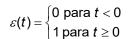
Función de transferencia de sistema de primer orden

$$\frac{C(s)}{R(s)} = \frac{k e^{-\theta s}}{\tau s + 1}$$

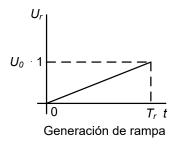
 $\omega_d = \omega_0 \cdot \sqrt{1 - \zeta^2}$

Función de transferencia de sistema de primer orden con

tiempo muerto diferente de cero

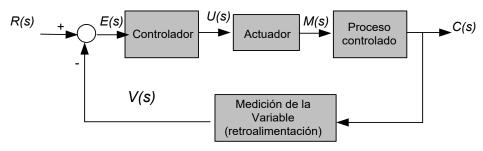

Frecuencia natural amortiguada

Respuesta escalón de un elemento de transferencia



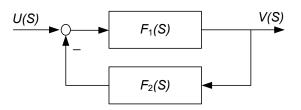
$$U_r(t) = \frac{U_0}{T_r} r(t) = \frac{U_0}{T_r} \int_0^t \varepsilon(t) dt = \frac{U_0}{T_r} t \varepsilon(t)$$

Respuesta rampa


 T_r = tiempo de rampa $\varepsilon(t)$ = escalón unitario

Elementos de un diagrama de control

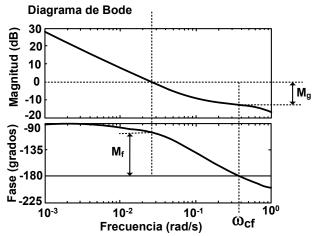
Diagrama de un sistema de lazo cerrado.



$$e = R - V$$

$$F_0(S) = F_1(S) \cdot F_2(S)$$

Comparador, variable de error


Función de transferencia de circuito abierto

$$R_{F}\left(0\right) = \frac{1}{\left(1 + V_{0}\right)}$$

Factor de control

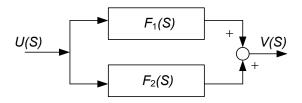
Diagrama de Bode de un sistema en lazo abierto.

M_q = Margen de ganancia

M_f = Margen de fase

ωcg = Frecuencia de cruce de ganancia

 ω_{cf} = Frecuencia de cruce de fase


Reglas para determinar la función de transferencia del circuito de control total

$$F(s) = F_1(s) \cdot F_2(s)$$
 Combinación en serie

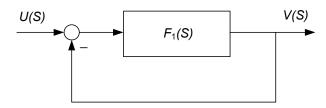
$$U(S)$$
 $F_1(S)$ $F_2(S)$

$$F(s) = F_1(s) + F_2(s)$$

Combinación en paralelo

$$F(s) = \frac{F_1(s)}{1 + F_1(s) \cdot F_2(s)}$$

Retroalimentación



Nota: El signo del denominador de F(s) es el contrario del signo en el punto de suma del diagrama de control. Un signo "+" en el punto de suma indica retroalimentación positiva. Un signo "-" en el punto de suma indica retroalimentación negativa

$$F_2(s) = 1$$

$$F(s) = \frac{F_1(s)}{1 + F_1(s)}$$

Retroalimentación directa

Elementos primitivos de transferencia Elementos de retraso de primer orden

Identificador	Ecuación en el			
Símbolo en el diagrama de control	dominio del tiempo	Ejemplos de estructura		
Pν	$V = K_{\rho} \cdot U$	K _ρ U Elemento proporcional		
V	$v = K_1 \int_0^t u dt$ $= K_1 \int_0^t u dt + v(0)$ $v = K_1 u$	Elemento integral		
<i>D K_d V V</i>	$v = k_D \cdot \dot{u}$ $\int v dt = k_D \cdot u$	<i>K_d u V</i> Elemento derivativo		
$ \begin{array}{c c} T_t \\ \hline 1 & T_t \\ \hline & V \end{array} $	$v(t) = u(t - T_t)$	1 V Elemento de tiempo muerto		
$P-T_1$ V	$V + T_{\dot{V}} - k_{\rho} \cdot u$	Elemento $P-T$		

Elementos de retraso de segundo orden Elemento PI de combinación en paralelo

Función de transferencia	Respuesta escalón unitario, ecuación $h(t) =$			
F(S) =	Diagrama			
$\frac{K_{\rho}}{1+2\frac{\vartheta}{\omega_{0}}+(\frac{1}{\omega_{0}})^{2}.s^{2}}$ $0<\vartheta<\infty$	$k_{\rho} \left[1 - \frac{\omega_{0}}{\omega_{d}} e^{g\omega_{0}t} \cdot \cos(\omega_{d} t - \theta) \right]; \omega_{d} = \omega_{0} \sqrt{1 - g^{2}}$ $\theta = \arcsin \theta$ $0 \le \theta \le 90^{\circ}$ $k_{\rho} = \left(1 + e^{-\pi \tan \theta} \right)$ $0 < \theta < 90^{\circ}$ $\frac{\theta}{\omega_{d}} \frac{1}{\pi + 2\theta} \frac{2\pi}{2\omega_{d}}$ $\frac{1}{2\omega_{d}} \frac{2\pi}{2\omega_{d}}$ $\frac{5\pi + 2\theta}{2\omega_{d}}$			
	$K_{P} = \left[1 - \frac{1}{T_{1} - T_{2}} \left(T_{1} e^{\frac{t}{T_{1}}} - T_{2} e^{\frac{t}{T_{2}}}\right)\right]$			
$\frac{K_{P}}{(1+T_{1}s)(1+T_{2}s)}$ $T_{1,2} = \frac{1}{\omega_{0}} \left(\vartheta \pm \sqrt{\vartheta^{2}-1} \right)$ $\vartheta > 1$	$K_{p} = \left[1 - (K+1)K^{\frac{K}{1-K}}\right]$			
	$K = \frac{T_1}{T_2} \qquad \qquad T_1 \frac{\ln k}{k-1} \qquad T_1 \frac{\ln k}{k-1} + T_1 + T_2$			

Función de transferencia	Respuesta escalón unitario, ecuación $h(t) =$		
$\mathbf{F}(\mathbf{s}) =$	Diagrama		
$K_{l}t^{\frac{1}{s}}+K_{p}$	$K_{l}t + K_{p} = K_{p}\left(1 + \frac{t}{Tn}\right)$		
	$h(t)$ K_{p} $-T_{n}$ t		

Elementos PD, PID de combinación en paralelo Elementos I-TT y D-T1 de combinación serie.

Identificador símbolo en el diagrama de control	Ecuación del dominio del tiempo	Ejemplos de estructura
PD	$v = K_{\rho} \cdot u + K_{D} \cdot u$ $= K_{\rho} \left(u + T_{v} \cdot u \right)$ $T_{v} = \frac{K_{D}}{K_{\rho}}$	K_p K_p V V
PID	$v = K_1 \int u dt + K_p u + K_D u$ $= K_p \left[\frac{1}{T_n} \int u dt + u + T_v u \right]$ $T_n = \frac{K_p}{K_1} : T_v = \frac{K_D}{K_p}$	1/T _n V TV V K _p TV V K ₁ Tnk Truk V V V V V V V V V V V V V

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Identificador símbolo en el diagrama de control	Ecuación del dominio del tiempo	Ejemplos de estructura	
1-T ₁ k ₁ T	$v + Tv = K1 \int u dt$	K_1 V	
D – T ₁ V	$V + T \dot{V} = K_D \dot{u}$	1/T K _D	

Elementos de combinación en serie

Elementos (PD)-T₁ y PID-tT₁ de combinación en grupo

Función de transferencia <i>F(x)</i> =	Respuesta escalón unitario, ecuación $h(t) =$ Diagrama		
$\frac{K_D \cdot s}{1 + 2\frac{g}{\omega_0} s + \left(\frac{1}{\omega_0}\right)^2 s^2}$	$K_{D} = \frac{\omega_{0}^{2}}{\omega_{d}} \cdot e^{-\theta \omega_{0}t}; \omega_{d} = \omega_{0}\sqrt{1 - \mathcal{G}^{2}}$ $K_{D} \cdot \omega_{0} \cdot e^{-\left(\frac{\pi}{2} - \theta\right) \tan \theta}$ $\theta = \operatorname{arcsen} \mathcal{G}$ $K_{D} \cdot \frac{\omega_{0}^{2}}{\omega_{d}} = \frac{1}{2\omega_{d}} \cdot \frac{1}{2\omega_{d}}$		

Función de transferencia <i>F(x)</i> =	Respuesta escalón unitario, ecuación $h(t) =$ Diagrama		
	$K_{\rho} + \left[\frac{k_{D}}{T} - k_{\rho}\right] e^{-\frac{t}{T}} = K_{\rho} \left[1 + \left(\frac{t_{\nu}}{T} - 1\right) e^{-\frac{t}{T}}\right]$		
$\frac{K_{p} + K_{D \cdot s}}{1 + T \cdot s} = K_{p} \frac{1 + T_{v} \cdot s}{1 + T \cdot s}$ $= K_{p} + K_{p} \frac{(T_{v} - T) \cdot s}{1 + T \cdot s}$ $T_{v} - T = T_{v}^{*}$	$K_{p}T_{v}IT$ 0 $K_{p}T_{v}IT$ $h(t)$ $K_{p}(0.63 + 0.37TvIT)$ $T_{v} > T$ $T_{v} > T$ $T_{v} > T$		

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Función de transferencia F(x)=	Respuesta escalón unitario, ecuación h(t) Diagrama		
K	$K_{p} - K_{1}T + K_{1}t + \left[K_{1}T - K_{p} + K_{D}\frac{1}{T}\right]e^{-\frac{t}{T}}$ $= K_{p}\left[1 - \frac{T}{t_{n}} + \frac{t}{T_{n}} + \left(\frac{T}{T_{n}} - 1 + \frac{T_{v}}{T}\right)e^{-\frac{t}{T}}\right]$		
$ \frac{\frac{K_1}{s} + K_p + K_D \cdot s}{1 + T \cdot s} $ $ = K_p \frac{\frac{1}{(T_n \cdot s)} + 1 + T_v \cdot s}{1 + T \cdot s} $ $ = K_p \left[\frac{1}{T_n \cdot S} + \frac{T_n^*}{T_n} + \frac{T_n T_v - T T_n^*}{T_n (1 + T \cdot s)} s \right] $ $ T_n = \frac{K_p}{K_1} : T_v = \frac{K_D}{K_p} $ $ T_n^* = T_n - T $	$K_{\rho}T_{\nu}IT$ 0 T $K_{\rho}T_{\nu}IT$ $h(t)$ $K_{\rho}(0.63 + 0.37T\nu)IT$ $T_{\nu} > T$ $T_{\nu} > T$		

Reglas empíricas para ajustar elementos de control P, Pl y PID.

Se conocen K_{Pv}, T_v y T_{tv} del sistema controlado:

O O O O O O O O O O O O O O O O O O O	aoi olotollia ooliti olaaoi		
Controlador	K_{pr}	T_n	t_{ν}
Р	$\frac{T_{y}}{K_{py} \cdot T_{ty}}$		
PI	$0.9 \frac{T_{y}}{K_{py} \cdot T_{ty}}$	3.37 _{ty}	
PID	$1.2 \frac{T_y}{K_{\rho y} T_{ty}}$	2T _{ty}	0.57 _{ty}

Se desconocen los datos característicos del sistema controlado:

Controlador	K_{pr}	T_n	$t_{\scriptscriptstyle m V}$
Р	$0.5K_{pRcrit*}$		
PI	$0.45K_{pRcrit^*}$	0.83 <i>T_{crit*}</i>	
PID	0.6K _{pRcrit*}	0.5 <i>T_{crit*}</i>	0.125 <i>T_{crit*}</i>

Métodos para determinar la estabilidad

Criterio de Hurwitz $a_0 + a_1 s + a_2 s^2 + ... + a_n s^n = 0$

Condiciones para ecuaciones hasta tercer grado

Elemento derivado

Primer grado $a_0 \quad y \quad a_1 > 0$ Segundo grado $a_0, a_1, a_2 > 0$ Tercer grado $a_1 \cdot a_2 - a_3 \cdot a_0 > 0$

Abreviaturas

Tipos de elementos de transferencia

<i>D-T</i> ₁	Elemento derivado con retraso de 1er orden
D- T 2	Elemento derivado con retraso de 2° orden
1	Elemento integral
<i>I-T</i> ₁	Elemento integral con retraso de 1er orden
P	Elemento proporcional
PD	Elemento derivado proporcional
PI	Elemento integral proporcional
PID	Elemento derivado integral proporcional
<i>P-T</i> ₁	Elemento de retraso de 1er orden
$P-T_2$	Elemento de retraso de 2° orden
(PD)-T ₁	Elemento PD con retraso de 1er orden
(PID) - T_1	Elemento PID con retraso de 1er orden
<i>T</i> ₁	Elemento de tiempo muerto

	Símbolos usados para términos de ingeniería de control
е	Variable de error
m_F	Pendiente de la amplitud de la respuesta en el diagrama de Bode
r	Variable de retroalimentación
и	Variable de entrada
V	Variable de salida
V _m	Sobrepaso de la función escalón unitario de un elemento de transferencia
W	Variable de referencia
w [*]	Variable objetivo
X	Variable controlada
X_A	Variable controlada final
X m	Sobretiro de la variable controlada
У	Variable reguladora
Z	Variable de perturbación
F (jω)	Frecuencia de la respuesta
F(s)	Función de transferencia
F (ω)	Amplitud de la respuesta
F₀ (jω)	Frecuencia de la respuesta del circuito abierto de control
F _o (s)	Función de transferencia del circuito abierto de control
$F_o(\omega)$	Amplitud de la respuesta del circuito abierto de control
$F_R(\omega)$	Amplitud de la respuesta del elemento de control
$F_{V}(\omega)$	Amplitud de la respuesta de la conexión en serie del sistema controlado y el equipo
, , ,	de medición
K_D	Coeficiente de acción derivada
K_{l}	Coeficiente de acción integral
K_P	Coeficiente de acción proporcional
$R_F(0)$	Factor de control
K_{Pk} (ω)	Coeficiente de acción proporcional en la representación en serie del elemento PID con $T_n > 4T_v$
K_{IR} (ω)	Coeficiente de acción integral del elemento controlado

Formulario para el sustentante del

Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA)

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

K_{PR}	Coeficiente de acción proporcional del elemento controlado
<i>T</i>	Tiempo de retraso
T_g	Tiempo de crecimiento
T_h	Periodo de vida media
T_n	Tiempo de restablecimiento
T _{fin}	Tiempo para alcanzar el estado estable
T _{inicio}	Tiempo para alcanzar la tolerancia inferior
T_u T_v	Tiempo muerto equivalente Tiempo de derivada
T_{N} T_{N} T_{N}	Tiempo de derivada Tiempo de restablecimiento (tiempo de derivada) en la representación en serie del
Ink, (IVK)	elemento PID con $T_n > 4T_v$
$T_{nk\delta}$, $(T_{vk\delta})$	Tiempo de restablecimiento (tiempo de derivada) en la representación en serie del
Inkò, (Ivkò)	elemento PID con $T_n > 4T_v$, determinado según el requisito de la fase
$T_{nkarepsilon}$, ($T_{vkarepsilon}$)	Tiempo de restablecimiento (tiempo de derivada) en la representación en serie del
	elemento PID con $T_n > 4T_v$, determinado según el requisito del margen de ganancia
\mathcal{E}	Margen de ganancia
δ	Margen de fase
$\varphi\delta$	Fase de la conexión en serie (sistema controlado, equipo de medición) en la
	frecuencia angular de cruce de ganancia ω_D , que cumple con el margen de fase δ
$\phi arepsilon$	Fase de la conexión en serie (sistema controlado, equipo de medición) en la
	frecuencia angular de cruce de fase ωπ
$\phi(\omega)$	Fase de la respuesta
$\phi_{o}(\omega)$	Fase de la respuesta del circuito abierto de control
$\phi_{R}(\omega)$	Fase de la respuesta del elemento de control
$\phi_{y}(\omega)$	Fase de la respuesta de la conexión en serie del sistema controlado y el equipo de
_	medición
${\mathcal G}$	Frecuencia de amortiguamiento
ω	Frecuencia angular
ω_{o}	Frecuencia angular característica
$\mathcal{O}\delta$	Frecuencia angular propia
ω_{D}	Frecuencia angular de cruce de ganancia
ω_{E}	Frecuencia angular en el quiebre
$\omega_{D\delta}$	Frecuencia angular de cruce de ganancia al cumplir con la condición de margen de fase
$\omega_{D}arepsilon$	Frecuencia angular de cruce de ganancia al cumplir con la condición de margen de ganancia
ω_{π}	Frecuencia angular de cruce de fase
$\omega_{\pi^{\varepsilon}}$	Frecuencia angular de cruce de fase, cumpliendo con el margen de ganancia ϵ
	, , ,

Simbología de control

FUENTE: http://www.festo-didactic.com/ov3/media/customers/1100/00525179001075223667.pdf. Consultado el 12/01/2011, recopilado con fines académicos.

Designación	Tabla de función	Ecuación	Símbolo DIN 40900-12	Símbolo ISO 1219/1 neumática	Símbolo DIN en 60617-7 eléctrico
Identidad	E A 0 0 1 1	A = E	E-1-A	[F A A
Negación	E A 0 1 1 1 0	$A=\overline{E}$	E—1 → A		
OR	E1 E2 E3 0 0 0 0 1 1 1 0 1 1 1 1	A = E1 v E2	E1—≥1 — A	E1 E2	E1 E2
AND	E1 E2 A 0 0 0 0 1 0 1 0 0 1 1 1	A = E1 ∧ E2	E1— & — A	£1 E2	E1 E2 A
Inhibición	E1 E2 A 0 0 0 0 1 0 1 0 1 1 0 1	$A = E1 \wedge \overline{E2}$	E1— & — A	F2 E1	E1 E2
Implicación	E1 E2 A 0 0 1 0 1 0 1 0 1 1 1 1	$A = E1 \vee \overline{E2}$	E1— ≥1 — A	E2 AV E1	E1 E2
NOR	E1 E2 A 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0	$A = \overline{E1 \vee E2}$	E1— ≥1 — A		E1 E2 K17

Designación	Tabla de función	Ecuación	Símbolo DIN 40900-12	Símbolo ISO 1219/1 neumática	Símbolo DIN en 60617-7 eléctrico
NAND	E1 E2 A 0 0 1 0 1 1 1 0 1 1 1 0	$A = \overline{E1 \wedge E2}$	E1 & A		E1 K1 E2 K A
Memoria	S R A B 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1		R — R — B S — A		S K K K K K K K K K K K K K K K K K K K
Timer on delay	E Tiempo A O O O O O O O O O O O O O O O O O O		E A	A A P R	K K
Timer off delay	E Tiempo A		E—F ^{t2} —A	E P R	K A

Descripción	Símbolo	Descripción	Símbolo
Compresor		Bomba constante	△ €
Bomba variable	#	Bomba de vacío	
Motor neumático	\bigcirc	Motor neumático bidireccional	
Motor hidráulico mono-direccional variable	#	Motor hidráulico bidireccional variable	
Rotring		Cilindro simple efecto	
Cilindro doble efecto		Cilindro doble efecto con amortiguamiento variable	
Cilindro doble vástago		Cilindro telescópico	

Descripción	Símbolo	Descripción	Símbolo
Cilindro sin vástago		Flujómetro	
Manómetro	\S	Mirilla	\ominus
Tacómetro		Línea	
Línea flexible	••	Alimentación neumática	\triangle
Alimentación hidráulica		Línea de conexión	
Cruce de líneas	+	Racor bloqueado	
Silenciador		Salida de aire sin racor	-
Salida de aire con racor	\	Bloqueo	T
Conexión rotatoria		Acoplamiento conectado	
Acoplamiento conectado con antirretorno	\rightarrow	Acoplamiento no conectado	
Acoplamiento no conectado con antirretorno		Válvula de paso	→
Filtro	\Diamond	Filtro con deposito manual	_
Filtro con deposito automático		Enfriador	
Enfriador con flujo volumétrico externo		Secador	\Diamond
Lubricador	♦	Unidad de mantenimiento	-\ <u>\</u>
Depósito		Sensor réflex	

Descripción	Símbolo	Descripción	Símbolo
Boquilla reguladora de presión		Boquilla	
Boquilla receptora con suministro de aire		Interruptor neumático con imán permanente	
Accionamiento general		Botón pulsador	
Accionamiento de jalar		Accionamiento de palanca	
Accionamiento de pedal	$\not\models$	Accionamiento de Leva	
Accionamiento de resorte	W[Accionamiento de rodillo	•
Accionamiento de rodillo escamotable		Accionamiento de posición inicial	
Accionamiento neumático	→-	Accionamiento de presión diferencial	
Accionamiento neumático y resorte	₩	Accionamiento de solenoide	
Accionamiento de motor eléctrico	M	Accionamiento de motor a pasos	
Accionamiento múltiple		Símbolo de accionamiento general	*
Enclavamiento	_>	Accionamiento de dispositivo central abierto	
Válvula monoestable 2/2 vías NC	1 (P)	Válvula monoestable 2/2 vías NO	2 (A) T 1 (P)
Válvula monoestable 3/2 vías NC	2 (A) 1 (P) 3 (R)	Válvula monoestable 3/2 vías NO	1 (P) 2 (A) 3 (R)

Descripción	Símbolo	Descripción	Símbolo
Válvula biestable 3/3 vías NC	2 (A) 1 (P) 1 3 (R)	Válvula biestable 4/2 vías NO	4 (A) 2 (B) 1 (P) 3 (R)
Válvula biestable 4/3 vías centros cerrados	4 (A) 2 (B) 1 (P) 7 3 (R)	Válvula biestable 4/3 vías con derivación a tanque	4 (A) 2 (B) 1 (P) 3 (R)
Válvula biestable 5/2 vías NO	4 (A) 2 (B) 5 (R) 3 (S) 1 (P)	Válvula biestable 5/3 vías centros cerrados	5 (R) 1 (P) (B)
Válvula reguladora de caudal bidireccional)(Válvula reguladora de caudal bidireccional variable	*
Válvula reguladora de caudal bidireccional variable	*	Divisor de flujo	* *
Válvula reguladora de caudal bidireccional variable, con accionamiento mecánico y regreso por resorte		Válvula de presión ajustable con alivio	3 (R) 1(P)
Válvula de presión secuencial ajustable	12 (A) V 1 1(P)	Válvula reguladora de presión ajustable sin alivio	1 (P)
Válvula reguladora de presión ajustable con alivio	1 (P) V3(R)	Check	—
Check con resorte	$\wedge \wedge \diamond$	Válvula de simultaneidad	
Válvula de escape rápido		Válvula selectora	
Válvula reguladora de caudal mono- direccional	*		

Tabla comparativa de los símbolos eléctricos

FUENTE: http://www.extranet.schneider-electric.com.mx/opencms/opencms/SchneiderElectric/modules/Documentacion/Formulas/SimbolosIEC
2.pdf. Consultado el 12/01/2011, recopilado con fines académicos.

Naturaleza de los símbolos gráficos	Normas europeas	Normas EU
Contacto de cierre "NA" potencia–control		+ +
Contacto de apertura "NC" potencia–control		学 *
Contacto temporizado al accionamiento	NO NC	NC € NO €
Contacto temporizado al desaccionamiento	NO NC	NC NO
Cortocircuito fusible	2=1	-[]
Relé de protección	Térmico Magnético	Ş
Bobinas	A2 A1	A2 A1
Seccionadores		- T
Disyuntores	*	Magnético Magnetotérmico
Motores		

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

SÍMBOLOS IEC

FUENTE: http://www.simbologia-electronica.com/simbolos-electricos-electronicos/simbolos-sensores-electronicos.htm. Consultado el 06/10/2014, recopilado con fines académicos. Simbología / Símbolos de transductores, sensores, detectores

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Transductor Símbolo genérico		Transductor piezoeléctrico	<u>=</u>
Resistencia / Resistor LDR Resistencia sensible a la luz		Micrófono Detector de sonidos	=
Detector de líquidos	-=	Detector de termoluminiscencia	
Fotodiodo Diodo sensible a la luz visible o infrarroja	//	Fototransistor Transistor sensible a la luz	E E
Sensor electrostático Sensor sensible al tacto	-dD-	Sensor electrostático Sensor sensible al tacto	
Sensor electrostático Sensor sensible al tacto		Interruptor de mercurio Detecta la inclinación	•
Reed / Relé de láminas Se cierra a la proximidad de un imán		Interruptor detector de fin de carrera o límite	_\$

Símbolos de contactos por efectos o dependencias

FUENTE: http://www.simbologia-electronica.com/simbolos-electricos-electronicos/simbolos-sensores-electronicos.htm. Consultado el 06/10/2014. recopilado con fines académicos.

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Contacto de nivel Accionado por el nivel de un fluido		Contacto térmico Accionado por un relé térmico por el efecto de la temperatura	7
Contacto de nivel Accionado por el nivel de un fluido	<u> </u>	Contacto térmico Accionado por el efecto de la temperatura	
Contacto por flujo Accionado por el flujo de un fluido		Presostato Contacto accionado por presión	7
Contacto por flujo Accionado por el flujo de un fluido	Д /-	Presostato Contacto accionado por presión	₽_

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Contacto accionado por el flujo de un gas	<u></u>	Termostato Contacto térmico, accionado por el efecto de la temperatura	
Contacto por frecuencia	F\	Contacto accionado por un contador de impulsos	<u> </u>

Símbolos de sensores por proximidad

FUENTE: http://www.simbologia-electronica.com/simbolos-electricos-electronicos/simbolos-sensores-electronicos.htm. Consultado el 06/10/2014, recopilado con fines académicos.

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Contacto por proximidad Símbolo genérico	\rightarrow	Sensor sensible por proximidad Representación unifilar Símbolo genérico	
Contacto por proximidad a un imán		Contacto por proximidad al hierro	Fe 🔷
Sensor sensible al tacto	♥	Sensor capacitivo sensible por proximidad a sólidos	
Sensor de proximidad capacitivo, salida normalmente abierta	÷	Sensor de proximidad capacitivo, salida normalmente cerrada	- - - - -
Sensor de proximidad capacitivo de 3 hilos, salida normalmente abierta]c ⇒ ↓	Sensor de proximidad capacitivo de 3 hilos, salida normalmente cerrada	- + ⇔ + + +
Sensor de proximidad capacitivo de 4 hilos, con 2 salidas, una abierta y otra cerrada	K P → ↓ -	Sensor con fibra óptica	÷1

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Símbolos de optoacopladores / Optoaisladores

Detectores fotoeléctricos, optoelectrónicos

FUENTE: http://www.simbologia-electronica.com/simbolos-electricos-electronicos/simbolos-sensores-electronicos.htm. Consultado el 06/10/2014, recopilado con fines académicos.

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Optoacoplador / Optoaislador Diodo - Semiconductor	**	Optoacoplador / Optoaislador Diodo - Diac	Y = AY
Optoacoplador de dos receptores		Optoacoplador Diodo - Transistor	
Optoacoplador encapsulado Diodo – Transistor con hueco para el corte del haz	Y =	Optoacoplador encapsulado Diodo - Transistor	¥=[

Símbolos de termopares / termocuplas

Transductores detectores de temperatura

FUENTE: http://www.simbologia-electronica.com/simbolos-electronicos/simbolos-

sensores-electronicos.htm. Consultado el 06/10/2014, recopilado con fines académicos.

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Termopar / Termocupla Termoacoplador	<_	Termopar / Termocupla Termoacoplador	
Termopar / Termocupla		Termopar / Termocupla	×
Termopar polarizado El lado grueso es el polo negativo	ightharpoonup	Termopar polarizado	
Termopar / Termocupla Con elemento calefactor no aislado	$\overline{\bigcap}$	Termopar / Termocupla Con elemento calefactor no aislado	\rightarrow
Termopar / Termocupla Con elemento calefactor aislado		Termopar / Termocupla Con elemento calefactor aislado	→ ⊂

FUENTE: http://www.extranet.schneider-electric.com.mx/opencms/opencms/SchneiderElectric/modules/Documentacion/Formulas/SimbolosIEC
2.pdf. Consultado el 12/01/2011, recopilado con fines académicos.

DESCRIPCIÓN	12/01/2011, recopilado con fines a SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Corriente alterna	\sim	Conductor, circuito auxiliar	
Corriente continua	=	Conductor, circuito principal	
Corriente rectificada	\geq	Haz de 3 conductores	1 2 3
Corriente alterna trifásica de 50 Hz	3 \(\square 50 Hz \)	Representación de un hilo	-///-
Tierra	#	Conductor neutro (N)	
Masa	<u></u>	Conductor de protección (PE)	
Tierra de protección		Conductor de protección y neutro unidos	
Tierra sin ruido	\	Conductores apantallados	}
Fusible- seleccionador		Conductores par trenzado	
1 Enlace mecánico (forma 1) 2 Enlace mecánico (forma 2)	1	Interruptor de posición	NO NC
Dispositivo de retención		Contactos de cierre o apertura temporizados al accionamiento	NO NC
Dispositivo de retención en toma	_11	Contactos de cierre o apertura temporizados al desaccionamiento	NO NC

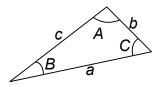
DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Dispositivo de retención liberado		Interruptor de posición de apertura, de maniobra de apertura positiva	- S1 21 7 22 7
Retorno automático		Mando mecánico manual de palanca	-S1 \
Retorno no automático		Mando mecánico manual de palanca con maneta	-s1 ⁻
Retorno no automático en toma		Mando mecánico manual de llave	-S1 🤶
Enclavamiento mecánico	·····\ <u>\</u>	Mando mecánico manual de manivela	-S1 —
Dispositivo de bloqueo		Enganche de pulsador de desenganche automático	-S1 _П
Mando electromagnético Símbolo general	A1 A2	Mando de roldana	-S1 <u> </u>
Mando electromagnético Contactor auxiliar	A1 - K A 1 - A2	Mando de leva y roldana	-\$1 <u></u>
Mando electromagnético Contactor	A1 - K M 1	Control mediante motor eléctrico	M
Mando electromagnético de 2 devanados	A1 B1 - K A 1 - A2 B2	Control por acumulación de energía mecánica	-S1
Mando electromagnético de puesta en trabajo retardada	A1 A2	Relé de medida o dispositivo emparentado Símbolo general	1 - 2

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Mando electromagnético de puesta en reposo retardada	A1 - K A 1 A2	Relé de sobreintensidad de efecto magnético	-F1 2
Mando electromagnético de un relé de remanencia	A1 - K A 1 A2	Relé de sobreintensidad de efecto térmico	-F1 2
Mando electromagnético de enclavamiento mecánico	A1 - K A 1 A2	Relé de máxima corriente	-F1 I >
Mando electromagnético de un relé de polarizado	A1 - K A 1 A2	Relé de mínima tensión	-F1 <i>U</i> <
Contacto "NA" (de cierre) 1 – principal, 2 – auxiliar	1 2	Relé de de falta de tensión	-F1 <u>U.0</u>
Contacto "NC" (de apertura) 1 – principal, 2 – auxiliar	1 2	Dispositivo accionado por frecuencia	-F1 f
Interruptor	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Dispositivo accionado por el nivel de un fluido	-\$1
Seccionador	7	Dispositivo accionado por un número de sucesos	-S1 O
Contactor	4	Contactos de dos direcciones no solapado (apertura antes de cierre)	LJ

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Ruptor	<u> </u>	Contactos de dos direcciones solapado	<u>لما</u>
Disyuntor	*	Contacto de dos direcciones con posición mediana de apertura	
Interruptor- seccionador	\ \frac{1}{6}	Contactos presentados en posición accionada	NO NC
Interruptor- seccionador de apertura automática	4	Contactos de apertura o cierre anticipado. Funcionan antes que los contactos restantes de un mismo conjunto	NO NC
Mando por efecto de proximidad	-S1 (Contactos de apertura o cierre retardado. Funcionan más tarde que los contactos restantes de un mismo conjunto	NO NC
Mando por roce	-S1 🏚 —	Contacto de paso con cierre momentáneo al accionamiento de su mando	1
Dispositivo sensible a la proximidad, controlado por la aproximación de un imán	[⊕—	Contacto de paso con cierre momentáneo al desaccionamiento de su mando	
Dispositivo sensible a la proximidad, controlado por la aproximación del hierro	Fe 🚯——	Contactos de cierre de posición mantenida	
Diodo	-v ¥	Cortocircuito fusible	1 -F []] 2

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Rectificador en acoplamiento de doble vía (puente rectificador) símbolo desarrollado – símbolo simplificado		Cortocircuito fusible con percutor	1 -F ∰ 2
	Otros tipos	de mandos	
Transistor PNP	-v (Tiristor NPN	-v (
Mando neumático o hidráulico de efecto simple	-Y1 🗎	Condensador	-c
Mando neumático o hidráulico de efecto doble	-Y1 🛗	Elemento de pila o de acumulador	-G -G
Mando electromagnético de un relé intermitente	A1 -KA1 A A2	Resistencia	1 R 2
Mando electromagnético de accionamiento y desaccionamiento retardados	A1 -KA1 X A2	Dispositivo accionado por caudal	-S1 <u></u>
Bobina de relé RH temporizado en reposo	B2 <mark>A1 </mark> -KA1 A2	Dispositivo accionado por la presión	-B1 P —
Bobina de relé RH de impulso en desactivación	B2 <mark>A1 </mark> A2 -KA1	Shunt	1 2
Bobina de electroválvula	-KA1 A2	Inductancia	1 - 2
Transformado de tensión	-T1	Potenciómetro	1 -R 1 2

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Autotransformador	hynd	Resistencia dependiente de la tensión: varistancia	-R 1 U
Transformador de corriente	-T1	Resistencia dependiente de la temperatura: termistancia	1 -R 2 T
Chispómetro	1	Fotorresistencia	
Pararrayos	þ	Fotodiodo	2
Fototransistor (tipo PNP)		Válvula	‡
Aparato indicador Símbolo general	\Diamond	Electroválvula	A1 + A2 + A2
Amperímetro	A	Contador de impulsos	A1 ⋈ A2
Aparato grabador Símbolo general	Image: second content of the content	Contador sensible al roce	
Amperímetro grabador	A	Contador sensible a la proximidad	
Contador Símbolo general		Detector de proximidad inductivo	
Contador de amperios-hora	Ah	Detector de proximidad capacitivo	⊕
Freno Símbolo general		Detector fotoeléctrico	* * * * * * * * * * * * * * * * * * *


DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Freno apretado		Convertidor Símbolo general	
Freno aflojado		Derivación	
Reloj	-S1 🕘	Derivación doble	
Lámpara de señalización o de alumbrado (1)	-X1 -H1 ⊗ -X2	Cruce sin conexión	
Dispositivo luminoso intermitente (1)	-X1 -H1 ⊗ /¬\ -X2	Borna	VO 20
Avisador acústico	1 H1 2	Puente de bornas, ejemplo con referencias de bornas	11 12 13 14
Timbre	1 L -H1 D	Toma 1 – mando, 2 – potencia	
Sirena	1 -H1	Conexión por contacto deslizante	
Zumbador	1 -H1 2	Clavija 1 – mando, 2 – potencia	1 2
Motor asíncrono trifásico, rotor de anillos	U1 V1 W1 0 0 0 M1 3^0 K1 L1 M1	Motor de corriente continua de excitación compuesta	A1

DESCRIPCIÓN	SÍMBOLO	DESCRIPCIÓN	SÍMBOLO
Motor de imán permanente	A1 A2 O	Generador de corriente alterna	U1 Q G V U2 Q
Motor asíncrono equipado con sondas de termistancia	U1 V1 0 0 0 T1 T2	Generador de corriente continua	A1 Q G A2 Q
Motor asíncrono trifásico, de rotor en cortocircuito	U1 V1 W1 O O O M1 3\forall	Conmutador (trifásico/continuo) de excitación en derivación	U1 V1 W1 0 0 0 3\(\frac{C}{\display}\) A2
Motor asíncrono monofásico	U1 V1	Motor de corriente continua de excitación separada	A1 M A2 O F1 F2
Motor asíncrono de dos devanados estator separados (motor de dos velocidades)	U1 V1 W1 0 0 0 M1 3 0 U2 V2 W2	Motor de corriente continua de excitación en serie	A1
Motor asíncrono de acoplamiento de polos (motor de dos velocidades)	U1 W2 W2 W2	Motor asíncrono con seis bornes de salida (acoplamiento estrella-triángulo)	U1 V1 W1 0 0 0 M1 3 \(\sqrt{V} \) W2 U2 V2

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Anexo

Leyes trigonométricas

Ley de senos	$\frac{a}{\operatorname{sen} A} = \frac{b}{\operatorname{sen} B} = \frac{c}{\operatorname{sen} C}$
Ley de cosenos	$c^2 = a^2 + b^2 - 2a \cdot b \cdot \cos C$ Los otros lados y ángulos están relacionados en forma similar

Identidades trigonométricas

identidades trigorionis	otilodo		
Pitagóricas	$\operatorname{sen}^2\theta + \cos^2\theta = 1$	$1 + \tan^2 \theta = \sec^2 \theta$	$1 + \cot^2 \theta = \csc^2 \theta$
Inversas	$\operatorname{sen}\theta = \frac{1}{\csc\theta}$	$\cos\theta = \frac{1}{\sec\theta}$	$\tan\theta = \frac{1}{\cot\theta}$
Por cociente	$\tan\theta = \frac{\operatorname{sen}\theta}{\cos\theta}$	$\cot\theta = \frac{\cos\theta}{\sin\theta}$	
Ángulo doble	$ sen 2\theta = 2 sen \theta \cdot cos \theta $	$\cos 2\theta = \cos^2$ $= 2\cos^2$	$\theta - \sin^2 \theta$ $\theta^2 \theta - 1 = 1 - 2 \sin^2 \theta$
Seno cuadrado y coseno cuadrado	$\operatorname{sen}^2\theta = \frac{1-\cos 2\theta}{2}$	$\cos^2\theta = \frac{1 + \cos 2\theta}{2}$	

Valores de las funciones de ángulos importantes

θ	$\operatorname{sen} \theta$	$\cos \theta$	$\tan \theta$		
0°	0	1	0		
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$		
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1		
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√ 3		
90°	1	0	∞		

Fórmulas para potencias y raíces

$$p \cdot a^{n} \pm q \cdot a^{n} = (p \pm q) \cdot a^{n}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} = \left(\frac{a}{b}\right)^{\frac{1}{n}}$$

$$\sqrt[n]{a^{m}} = a^{m-n}$$

$$\sqrt[n]{a^{m}} = \left(\sqrt[n]{a}\right)^{m} = a^{\frac{m}{n}}$$

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\frac{1}{a^{n}} = a^{-n}$$

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$(ab)^{n} = a^{n}b^{n}$$

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

$$p \cdot \sqrt[n]{a} \pm q \cdot \sqrt[n]{a} = (p \pm q) \cdot \sqrt[n]{a} \qquad (a^m)^n = a^{mn} \qquad \sqrt{-a} = i \cdot \sqrt{a}$$

Expresiones algebraicas usuales

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a + b + c)^{2} = a^{2} + 2ab + 2ac + b^{2} + 2bc + c^{2}$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$ax^{2} + bx + c = 0,$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$(a - b + c)^{2} = a^{2} - 2ab + 2ac + b^{2} - 2bc + c^{2}$$

$$(a + b)^{n} = a^{n} + \frac{n}{1}a^{n-1}b + \frac{n(n-1)}{1 \cdot 2}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3}a^{n-3}b^{3} + \dots + b^{n}$$

$$a^{n} + b^{n} = (a - b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

Propiedades de los logaritmos

$$\log(x \cdot y) = \log x + \log y$$

$$\log \frac{x}{y} = \log x - \log y$$

$$\log \sqrt[n]{x} = \frac{1}{n} \log x$$

Tablas de equivalencias

Longitud

	m	in	ft	mi
1 metro	1	39.37	3.281	6.214x10 ⁻⁴
1 pulgada	2.54x10 ⁻²	1	8.333x10 ⁻²	1.578x10 ⁻⁵
1 pie	0.3048	12	1	1.894x10 ⁻⁴
1 milla	1609	6.336x10 ⁴	5280	1

Masa

	kg	uma	lb
1 kilogramo	1	6.022x10 ²⁶	2.205
1 unidad de masa atómica	1.661x10 ⁻²⁷	1	3.662x10 ⁻²⁷
1 libra	0.4536	2.732x10 ²⁶	1

Fuerza

	dina	N	lb _f	kg _f
1 dina	1	10 ⁻⁵	2.248x10 ⁻⁶	1.020x10 ⁻⁶
1 newton	10 ⁵	1	0.2248	0.1020
1 libra fuerza	4.448x10 ⁵	4.448	1	0.4536
1 kilogramo fuerza	9.807x10 ⁵	9.807	2.205	1

1 rpm =
$$\frac{\pi}{30}$$
 rad/s = 2π rad/min ≈ 6.2832 rad/min

Presión

	atm	mm Hg	Pa	bar
1 atmósfera	1	760	1.013x10 ⁵	1.013
1 mm Hg	1.316x10 ⁻³	1	133.3	1.333x10 ⁻³
1 pascal	9.869x10 ⁻⁶	7.501x10 ⁻³	1	10 ⁻⁵
1 bar	0.987	750 062	10 ⁵	1

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

 $1 \text{ MPa} = 10.1967 \text{ kg/cm}^2$

Energía, trabajo, calor

	Btu	HP∙h	J	cal	kWh	eV
1 Btu	1	3.929x10 ⁻⁴	1055	252	2.930x10 ⁻⁴	6.585x10 ²¹
1 HP·h	2545	1	2.385x10 ⁶	6.413x10 ⁵	0.7457	1.676x10 ²⁵
1 joule	9.481x10 ⁻⁴	3.725x10 ⁻⁷	1	0.2389	2.778x10 ⁻⁷	6.242x10 ¹⁸
1 caloría	3.969x10 ⁻³	1.560x10 ⁻⁶	4.186	1	1.163x10 ⁻⁶	2.613x10 ¹⁹
1 kWh	3413	1.341	3.600x10 ⁶	8.600x10 ⁵	1	2.247x10 ²⁵
1 electronvolt	1.519x10 ⁻²²	5.967x10 ⁻²⁶	1.602x10 ⁻¹⁹	3.827x10 ⁻²⁰	4.450x10 ⁻²⁶	1

Campo magnético

	gauss	T
1 gauss	1	10-4
1 tesla	10 ⁴	1

Flujo magnético

raje magnetice					
	maxwell	Wb			
1 maxwell	1	10 ⁻⁸			
1 weber	10 ⁸	1			

Constantes físicas

Constante	Valor
Carga eléctrica	$e = 1.6 \times 10^{-19} C$
Masa electrón	$m_{\rm e} = 9.11 \text{ x } 10^{-31} \text{ kg}$
Masa protón	$m_{p} = 1.673 \times 10^{-27} \text{kg}$
Permisividad dieléctrica del vacio	$\varepsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2} = 8.85 \times 10^{-12} \frac{\text{F}}{\text{m}}$ $k = \frac{1}{4\pi\varepsilon_0}$
Permeabilidad en el vacio	$\mu_0 = 4\pi \times 10^{-7} \mathrm{T} \cdot \mathrm{m} = 1.26 \times 10^{-6} \frac{\mathrm{H}}{\mathrm{m}}$
Constante gravitacional	$G = 6.672 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2}$
Constante universal de los gases	$R = 8.314 \frac{J}{\text{molK}}$ $R = 0.082 \frac{\text{atm L}}{\text{K mol}}$
Número de Avogadro	6.022 x 10 ²³ mol ⁻¹
Aceleración debida a la gravedad	$g = 9.8 \text{ m/s}^2$
Resistividad del cobre, en 20 °C a 25 °C	$\rho_{Cu} = 1.71 \times 10^{-8} \Omega \cdot m = 0.017 \Omega \cdot mm^2/m$
Resistividad del aluminio, en 20 °C a 25 °C	$\rho_{AI} = 2.82 \text{ x} 10^{-8} \Omega \cdot \text{m} = 0.0282 \Omega \cdot \text{mm}^2/\text{m}$

Código de colores para resistencias eléctricas

Color de la banda	Valor de la 1°cifra significativa	Valor de la 2°cifra significativa	Multiplicador	Tolerancia	Coeficiente de temperatura
Negro	0	0	1	-	-
Marrón	1	1	10	±1%	100ppm/°C

Color de la banda	Valor de la 1°cifra significativa	Valor de la 2°cifra significativa	Multiplicador	Tolerancia	Coeficiente de temperatura
Rojo	2	2	100	±2%	50 ppm/°C
Naranja	3	3	1 000	-	15 ppm/°C
Amarillo	4	4	10 000	±4%	25 ppm/°C
Verde	5	5	100 000	±0.5%	20 ppm/°C
Azul	6	6	1 000 000	±0.25%	10 ppm/°C
Violeta	7	7	10 000 000	±0.1%	5 ppm/°C
Gris	8	8	100 000 000	±0.05%	1 ppm/°C
Blanco	9	9	1 000 000 000	-	-
Dorado	-	-	0.1	±5%	-
Plateado	-	-	0.01	±10%	-
Ninguno	-	-	-	±20%	-

Normatividad aplicable

Clave	Descripción
NOM-CCAT-001-ECOL/1993	Establece los niveles máximos permisibles de emisión a la atmósfera de bióxido y trióxido de
	azufre y neblinas de ácido sulfúrico, en plantas productoras de ácido sulfúrico.
NOM-040-ECOL-2002	Protección ambiental-fabricación de cemento hidráulico-niveles máximos permisibles de emisión a la atmósfera.
	Objetivo y campo de aplicación
	Esta Norma Oficial Mexicana establece los niveles máximos permisibles de emisión a la atmósfera de partículas, óxidos de nitrógeno, bióxido de azufre, monóxido de carbono, metales pesados, dioxinas y furanos, hidrocarburos totales y ácido clorhídrico provenientes de fuentes fijas dedicadas a la fabricación de cemento hidráulico, que utilicen combustibles convencionales o sus mezclas con otros materiales o residuos que son combustibles y es de observancia obligatoria para los responsables de las mismas, según su ubicación.

Tabla 1.- Niveles máximos permisibles de emisión de partículas

Tabla 1:- Hiveres maximos permisibles de emision de particulas						
Operación	Nivel máximo	Frecuencia de medición	Método de medición			
Trituración (1)	80 mg/m ³					
Molienda de materia prima (1)	80 mg/m ³					
Molienda de cemento hidráulico (1)	80 mg/m ³	Anual	NMX-AA-010-SCFI-2001			
Enfriamiento de clinker (1)	100 mg/m ³					
Calcinación de clinker (2)	0,15 * C kg de partículas/ton de materia prima alimentada					

⁽¹⁾ Condiciones normales, base seca, corregido al 7% de oxígeno (O2) en volumen.

Tabla 2.- Niveles máximos permisibles de emisión de gases (1)

Parámetro		nto blanc /lg/m³	0	Ce	mento gr Mg/m³	is	Frecuencia de medición	Método o principio de medición
	ZMCM	ZC	RP	ZMCM	ZC	RP		NMX-AA-055-1979
Bióxido de	400	2 200	2 500	400	800	1 200		Infrarrojo no dispersivo o
azufre								equivalente
Óxidos de	800	1 400	1 600	800	1 000	1 200	Anual	Quimioluminiscencia o
nitrógeno(2)							7 11 1001	equivalentes
Monóxido de	3 000	3 500	4 000	3 000	3 500	4 000		NMX-AA-035-1976
carbono								Infrarrojo no dispersivo o
								equivalente

⁽¹⁾ Condiciones normales, base seca, corregido al 7% de oxígeno (O2) en volumen.

⁽²⁾ Si C es la cantidad de material alimentado al horno de calcinación, en toneladas por hora base seca, el nivel máximo permisible de emisión será 0,15 * C (kg/h).

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

(2) Medido y determinado como óxido de nitrógeno (NO).

El factor para corregir el oxígeno (O2), se calcula de acuerdo a la siguiente ecuación:

$$Er = \frac{20.9 - Or}{(20.9 - Om)}Em$$

Donde:

Emisión calculada al valor de referencia del O2

Er = Em = Emisión medida (NO, SO₂ o CO)

Om = Valor medido para el O2 en condiciones actuales

Or = Nivel de referencia para el O₂ (7%)

Clave	Descripción				
NOM-041-ECOL-1999	Establece los límites máximos permisibles de emisión de gases contaminantes provenientes				
	del escape de los vehículos automotores en circulación que usan gasolina como				
	combustible.				
PROY-NOM-078-ECOL-1994	Que establece los niveles máximos permisibles de emisión a la atmósfera de ácido fluorhídrico y su método de medición en plantas productoras del mismo.				
NOM-079-ECOL-1994	Que establece los límites máximos permisibles de emisión de ruido de los vehículos				
	automotores nuevos en planta y su método de medición.				
	Objetivo				
	Esta Norma Oficial Mexicana establece los límites máximos permisibles de emisión de ruido				
	de los vehículos automotores nuevos en planta y su método de medición.				
	Campo de aplicación				
	La presente norma oficial mexicana es de observancia obligatoria para los fabricantes e				
	importadores de vehículos automotores nuevos en planta conforme a su peso bruto vehicular.				

Tabla 1. Los límites máximos permisibles de emisión de ruido expresados en dB (A) que generen los vehículos automotores.

Peso bruto vehicular	Límites máximos permisibles			
kg	dB(a)			
Hasta 3 000	79			
Más de 3 000 y hasta 10 000	81			
Más de 10 000	84			

- 6. Cálculo y expresión de resultados
- 6.1 La lectura a considerar es la más alta obtenida en la corrida de pruebas. En caso de existir picos debido al ruido ambiental debe repetirse la corrida.
- 6.2 El nivel sonoro de cada lado del vehículo debe ser el promedio de las dos lecturas más altas que no difieran en más de 2 dB(A).
- 6.3 El valor a informar debe ser del lado más ruidoso, indicándose cual fue.

Clave	Descripción
	Contaminación atmosférica - fuentes fijas - para fuentes fijas que utilizan combustibles fósiles sólidos, líquidos o gaseosos o cualquiera de sus combinaciones, que establece los niveles máximos permisibles de emisión a la atmósfera de humos, partículas suspendidas totales, bióxido de azufre y óxidos de nitrógeno y los requisitos y condiciones para la operación de los equipos de calentamiento indirecto por combustión, así como los niveles máximos permisibles de emisión de bióxido de azufre en los equipos de calentamiento directo por combustión.
	Que establece los límites máximos permisibles de emisiones a la atmósfera de bióxido de azufre y material particulado proveniente de las plantas de fundición de cobre y de zinc.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave		Desc	cripción		
NOM-001-ENER-2000	Eficiencia energética de bom Límites y método de prueba.	bas verticales t	tipo turbina con	motor externo el	éctrico vertical.
	Tabla 1. Valores mínimos de eficiencia en el punto óptimo, en función del gasto y número de pasos. Tamaño		de gastos /s)	Eficiencia mínima %	Núm. de pasos
	4	1.0	3.0	64.0	8
	5	3.66	11.55	71.0	5
	6	2.9	24.97	70.0	7
	7 8	4.7 10.0	34.65 68.0	73.0 77.0	6 7
	9	17.0	69.3	77.0	5
	10	20.4	66.6	80.0	7
	11	39.7	75.9	80.0	5
	12	32.0	150.0	80.0	5
	13	85.8	141.6	80.0	5
	14 15	61.1 101.0	250.0 209.0	80.0 81.0	5 7
	16	139.4	256.8	81.0	5
	18	222.6	353.9	81.0	5
	20	321.8	818.9	81.0	5
	24	533.6	902.2	81.0	5
NOM-003-ENER-2011 NOM-004-ENER-2008	Eficiencia térmica de calentado de prueba y etiquetado. Eficiencia energética de bom				•
	potencias de 0.187 kW a 0.74				
NOM-005-ENER-2012	Eficiencia energética de lavadetiquetado. Objetivo Esta Norma Oficial Mexicana (FE) y consumo de energía Establece además, los métodetiquetado. Campo de aplicación Esta Norma Oficial Mexicana comercializadas en los Estado Quedan excluidas de esta Noenergía eléctrica, así como las Especificaciones Valores mínimos de factor de Las lavadoras de ropa autor Oficial Mexicana, deben de cien la tabla 1. Las lavadoras rede energía eléctrica máximo, valores de FE y el consumo electrodomésticas, objeto de método de prueba indicado er	a tiene por obje que deben cui los de prueba c na es aplicable os Unidos Mexio rma Oficial Mexio rma Oficial Mexio s lavadoras de i energía (FE) máticas incluida umplir con el fa manuales y sen en kWh/año, e o de energía e esta Norma Ofi	eto establecer la mplir las lavado con que debe ve e a las lavado canos. Exicana, aquellas uso industrial y as en el campactor de energía miautomáticas, establecido en la eléctrica de las	os niveles del facoras de ropa elecerificarse dicho cueras de ropa elecerificarse dicho cueras de ropa elecerificación (FE) en L/kWh/cdeberán cumplir ca tabla 1-A. Para lavadoras de ropassoras de ro	ctor de energía ctrodomésticas. Implimiento y el ectrodomésticas o hacen uso de de esta Norma iclo establecido con el consumo determinar los pa automáticas

Tabla 1. Valores mínimos de factor de energía en L/kWh/ciclo para lavadora de ropa automática electrodoméstica

cicoti odomestica			
Tipo	FE (L/kWh/ciclo)		
Lavadora de ropa automática de eje vertical, con capacidad volumétrica del contenedor de ropa menor de 45.3 L	Impulsor Agitador Agitador con elemento calefactor	45	
Lavadora de ropa automática de eje vertical, con capacidad volumétrica del contenedor de ropa igual o mayor de 45.3 L	Impulsor Impulsor con elemento calefactor Agitador Agitador con elemento calefactor	45	
Lavadora de ropa automática de eje horizontal	Tambor Tambor con elemento calefactor	45	

Valores límite de consumo de energía

Las lavadoras de ropa manuales y semiautomáticas, incluidas en el campo de aplicación de esta Norma Oficial Mexicana deben de tener como máximo los consumos de energía eléctrica en kWh/año establecidos en la tabla 1-A. Para determinar los valores de consumo de energía eléctrica de las lavadoras de ropa electrodomésticas, objeto de esta Norma Oficial Mexicana, se debe de aplicar la norma mexicana NMX-J-585-ANCE-2007 hasta el capítulo 8 consumo de energía.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Tabla 1-A. Niveles de consumo de energía eléctrica máximo permisible [kWh/año] para lavadoras de ropa semiautomáticas y manuales electrodomésticas

	Clasificación por tipo y capacidad	Manual (kWh/año)	Semiautomáticas(kWh/año)
	Menores de 4.0 kg de ropa	19	21
lana sala an	De 4.0 kg a menores de 6.0 kg de ropa De 6.0 kg a menores de 10.0 kg de ropa		24
impuisor			24
	De 10.0 kg de ropa en adelante	38	38
	Menores de 4.0 kg de ropa	32	38
	De 4.0 kg a menores de 6.0 kg de ropa	44	96
Agitador	De 6.0 kg a menores de 8.0 kg de ropa	80	140
	De 8.0 kg a menores de 10.0 kg de ropa	80	140
	De 10.0 kg de ropa en adelante	104	160

Clave	Descripción
NOM-006-ENER-1995	Eficiencia energética electromecánica en sistemas de bombeo para pozo profundo en
	operación-límites y métodos de prueba.
NOM-007-ENER-2004	Establece la eficiencia energética en sistemas de alumbrado en edificios no residenciales.
NOM-008-ENER-2001	Eficiencia energética en edificaciones, envolvente de edificios no residenciales.
	Objetivo
	Esta norma limita la ganancia de calor de las edificaciones a través de su envolvente, con objeto de racionar el uso de la energía en los sistemas de enfriamiento.
	Campo de aplicación.
	Esta norma aplica a todos los edificios nuevos y las ampliaciones de edificios existentes.
	Quedan excluidos edificios cuyo uso primordial sea industrial o habitacional.
	Si el uso de un edificio dentro del campo de aplicación de esta norma constituye 90 por ciento o más del área construida, esta norma aplica a la totalidad del edificio.
	Especificaciones.
	Ganancia de calor. La ganancia de calor (Φ_p) a través de la envolvente del edificio debe ser
	menor o igual a la ganancia de calor a través de la envolvente del edificio de referencia (Φ_r) ,
	es decir: $(\Phi_p) \le (\Phi_r)$.
NOM-009-ENER-1995	Eficiencia energética en aislamientos térmicos.
NOM-010-ENER-2004	Eficiencia energética del conjunto motor bomba sumergible tipo pozo profundo. Límites y método de prueba.
	Objetivo:
	Fija los valores mínimos de eficiencia energética que debe cumplir el conjunto motor-bomba
	sumergible y establece el método de prueba para verificar en laboratorio dicha eficiencia.
	Campo de aplicación:
	Esta norma aplica únicamente a los conjuntos motor-bomba sumergible, distribuidos y
	vendidos en la República Mexicana, para el manejo de agua limpia con las propiedades que
	se especifican en esta norma

Tabla 1.- Valores de referencia para la eficiencia de la bomba sumergible

Capacidad de la bomba L/s	Eficiencia %
Mayor que 0.3 hasta 0.5	40
Mayor que 0.5 hasta 2.0	49
Mayor que 2.0 hasta 5.0	62
Mayor que 5.0 hasta 10.0	69
Mayor que 10.0 hasta 15.0	71
Mayor que 15.0 hasta 25.0	73
Mayor que 25.0 hasta 30.0	74
Mayor que 30.0 hasta 60.0	77
Mayor que 60.0	78

Tabla 2.- Valores de referencia para la eficiencia del motor sumergible

Motor kW	Motor hp	Eficiencia %		
Hasta 1.492	Hasta 2.0	68		
Mayor que 1.492 hasta 3.73	Mayor que 2.0 hasta 5.0	73		
Mayor que 3.73 hasta 5.595	Mayor que 5.0 hasta 7.5	75		

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Motor	Motor	Eficiencia		
kW	hp	%		
Mayor que 5.595 hasta 7.46	Mayor que 7.5 hasta 10.0	77		
Mayor que 7.46 hasta 11.19	Mayor que 10.0 hasta 15.0	79		
Mayor que 11.19 hasta 14.92	Mayor que 15.0 hasta 20.0	80		
Mayor que 14.92 hasta 22.38	Mayor que 20.0 hasta 30.0	81		
Mayor que 22.38 hasta 29.84	Mayor que 30.0 hasta 40.0	83		
Mayor que 29.84 hasta 44.76	Mayor que 40.0 hasta 60.0	86		
Mayores que 44.76	Mayores que 60.0	87		

Clave NOM-011-ENER-2006 PROY-NOM-013-ENER-2012 NOM-014-ENER-2004	Eficiencia energética en acondicionadores de aire tipo central, paquete o dividido. Límites, métodos de prueba y etiquetado. Eficiencia energética para sistemas de alumbrado en violidados.
	, , ,
	Eficiencia energética para sistemas de alumbrado en vialidados
NOM-014-ENER-2004	Eficiencia energética para sistemas de alumbrado en vialidades.
	Eficiencia energética de motores eléctricos de corriente alterna, monofásicos, de inducción,
	tipo jaula de ardilla, enfriados con aire, en potencia nominal de 0.180 kW a 1.500 kW. Límites, método de prueba y marcado.
NOM-015-ENER-2012	Eficiencia energética de refrigeradores y congeladores electrodomésticos. Límites, métodos
	de prueba y etiquetado.
NOM-016-ENER-2010	Eficiencia energética de motores de corriente alterna, trifásicos, de inducción, tipo jaula de ardilla, en potencia nominal de 0.746 a 373 kW. Límites, método de prueba y marcado.
NOM-017-ENER/SCFI-2012	Eficiencia energética y requisitos de seguridad de lámparas fluorescentes compactas autobalastradas. Límites y métodos de prueba.
NOM-018-ENER-2011	Aislantes térmicos para edificaciones. Características y métodos de prueba.
NOM-019-ENER-2009	Eficiencia térmica y eléctrica de máquinas tortilladoras mecanizadas. Límites, método de prueba y marcado.
NOM-020-ENER-2011	Eficiencia energética en edificaciones envolvente de edificios para uso habitacional.
NOM-021-ENER/SCFI-2008	Eficiencia energética y requisitos de seguridad al usuario en acondicionadores de aire tipo cuarto. Límites, métodos de prueba y etiquetado.
NOM-022-ENER/SCFI-2008	Eficiencia energética y requisitos de seguridad al usuario para aparatos de refrigeración comercial auto contenidos. Límites, métodos de prueba y etiquetado.
NOM-023-ENER-2010	Eficiencia energética en acondicionadores de aire tipo dividido, descarga libre y sin
	conductos de aire. Límites, método de prueba y etiquetado.
NOM-024-ENER-2012	Características térmicas y ópticas del vidrio y sistemas vidriados para edificaciones.
	Etiquetado y métodos de prueba.
PROY-NOM-025-ENER-2012	Eficiencia térmica de aparatos domésticos para cocción de alimentos que usan gas LP o gas natural. Límites, métodos de prueba y etiquetado.
NOM-028-ENER-2010	Eficiencia energética de lámparas para uso general. Límites y métodos de prueba.
NOM-030-ENER-2012	Eficacia luminosa de lámparas de diodos emisores de luz (led) integradas para iluminación
	general. Límites y métodos de prueba.
NOM-031-ENER-2012	Eficiencia energética para luminarios con diodos emisores de luz (leds) destinados a
	vialidades y áreas exteriores públicas. Especificaciones y métodos de prueba.
NOM-085-ECOL-1994	Contaminación atmosférica - Fuentes fijas - Para fuentes fijas que utilizan combustibles fósiles sólidos, líquidos o gaseosos o cualquiera de sus combinaciones, que establece los niveles máximos permisibles de emisión a la atmósfera de humos, partículas suspendidas totales, bióxido de azufre y óxidos de nitrógeno y los requisitos y condiciones para la operación de los equipos de calentamiento indirecto por combustión, así como los niveles máximos permisibles de emisión de bióxido de azufre en los equipos de calentamiento directo por combustión Objetivo.
	Norma Oficial Mexicana para fuentes fijas que utilizan combustibles fósiles sólidos, líquidos o gaseosos o cualquiera de sus combinaciones, que establece los niveles máximos permisibles de emisión a la atmósfera de humos, partículas suspendidas totales, bióxido de azufre y óxidos de nitrógeno y los requisitos y condiciones para la operación de los equipos de calentamiento indirecto por combustión; así como los niveles máximos permisibles de emisión de bióxido de azufre en los equipos de calentamiento directo por combustión. Campo de aplicación. Norma Oficial Mexicana para fuentes fijas que utilizan combustibles fósiles sólidos, líquidos y gaseosos o cualquiera de sus combinaciones, será de observancia obligatoria para el uso de los equipos de calentamiento indirecto por combustión, así como para los equipos de generación eléctrica que utilizan la tecnología de ciclo combinado. Será obligatoria igualmente sólo en emisiones de bióxido de azufre, para el uso de los equipos de calentamiento directo por combustión. Se exceptúan los equipos domésticos de

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave	Descripción
	hospitales y centros recreativos, en las industrias cuando estos equipos sean utilizados en las áreas de servicios al personal, sin embargo, aplicará para el caso de industrias, comercios y servicios, cuando los equipos y sistemas de combustión en lo individual o la suma de varios rebasen los 10 cc de capacidad nominal en cada instalación. También se exceptúan los quemadores industriales de campo, el sistema de regeneración de las plantas de desintegración catalítica, las plantas recuperadoras de azufre y los procesos de calentamiento directo que producen bióxido de azufre adicional al proveniente del combustible.

5.1 Los niveles máximos permisibles de emisión a la atmósfera de humos, partículas suspendidas totales, óxidos de nitrógeno y bióxido de azufre de los equipos de combustión de las fuentes fijas a que se refiere esta Norma Oficial Mexicana, son los establecidos en las tablas 4 y 5.

5.2 Cuando existan dos o más ductos de descarga cuyos equipos de combustión utilicen en forma independiente o conjunta combustibles fósiles sólidos, líquidos y gaseosos, podrán sujetarse a los valores de emisión contemplados en las tablas 4 y 5 o ponderar las emisiones de sus ductos de descarga en función de la capacidad térmica del equipo o conjunto de equipos de combustión mediante la utilización de la ecuación (1) y de la combinación de los combustibles fósiles utilizados de acuerdo a la tabla 1; y cuyo resultado deberá de cumplir con el límite máximo promedio permisible, que resulta de promediar ponderadamente los límites máximos permisibles de emisión contemplados en las tablas 4 y 5 de los equipos de combustión de una fuente fija al utilizar la ecuación (2).

Tabla 1

Combinación de combustibles	Límite de Referencia			
Gas/líquido	Líquidos			
Gas/sólido	Sólidos			
Líquido/sólido	Líquidos			
Gas/líquido/sólido	Líquidos			

Como alternativa la ecuación (3) para aquellos equipos de combustión que individualmente no cuenten con un sistema de medición y registro de alimentación de combustible.

Ecuación 1

$$Ep_{CT} = \frac{E_{CT1} \cdot CT_1 + E_{CT2} \cdot CT_2 + \dots + E_{CTn} \cdot CT_n}{CT_1 + CT_2 + \dots + CT_n}$$

EpcT = Emisión ponderada expresada en kg/10⁶ kcal

E_{CT1} = Emisión de contaminante determinado en cada equipo de combustión expresada en kg/10⁶ kcal.

CT_i = Carga térmica de cada equipo de combustión, expresada en kcal/h. Se obtiene al multiplicar el consumo de combustible por su poder calorífico.

i = 1,2,...,n en donde "n" es el número de equipos de combustión existentes en una misma fuente.

Ecuación 2

$$LEP = \frac{LE_1 \cdot C_1 + LE_2 \cdot C_2 + ... + LE_n \cdot C_n}{C_1 + C_2 + ... + C_n}$$

LEP = Límite máximo promedio permisible por fuente fija expresada en kg/10⁶ kcal o partes por millón en volumen.

Límite máximo permisible de emisión de contaminantes para el equipo de combustión i, seleccionado de las tablas 4 o 5 en función del tipo de combustible, expresado en kg/10⁶ kcal o partes por millón en volumen.

C_i = Consumo energético del equipo de combustión i expresado en kg/10⁶ kcal por hora (anexo 5).

i = Número consecutivo (1,2,3....,n) que se asigna a las fuentes existentes.

n = Número total de equipos de combustión existentes dentro de un mismo predio.

Ecuación 3

$$Ep_{Q} = \frac{E_{1} \cdot Q_{1} + E_{2} \cdot Q_{2} + ... + E_{n} \cdot Q_{n}}{Q_{1} + Q_{2} + ... + Q_{n}}$$

EpQ = Emisión ponderada en base a flujo en chimenea, expresada en unidades de concentración según se indica en las tablas 4 y 5.

Ei = Emisión detérminada en cada equipo de combustión, expresada en unidades de concentración según se indica en las tablas 4 y 5.

i = 1,2,...,n

Q = Flujo en chimenea expresado en m³/min a condiciones de 760 mm de Hg a 25 °C, base seca y 5% de oxígeno.

5.3 Las fuentes fijas cuya capacidad total en equipos de combustión sea mayor a 43 000 MJ/h, deberán respaldar el total de las emisiones de bióxido de azufre con certificados de emisión, los cuales serán asignados con base en los niveles regionales establecidos en la Tabla 2 y no deberán sobrepasar los límites de emisión ponderada indicados en la tabla 5.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

т.	h	_	-
14	U		_

Región	Emisión de SO ₂
	kg/10 ⁶ kcal)
Zona metropolitana de la ciudad de México	0.36
Zonas críticas	1.44

Conforme a las disposiciones jurídicas aplicables, la Secretaría de Desarrollo Social establecerá el esquema de regionalización, los procedimientos y el programa para que las fuentes fijas a que se refiere este numeral, cumplan con los límites de emisión ponderada por fuente fija, así como los niveles regionales de emisión, tomando en consideración el avance de los programas de infraestructura de suministro de combustibles.

5.4 Los equipos de combustión existentes deberán cumplir con los límites de óxidos de nitrógeno consignados en la tabla 4 y a partir de 1998 con los límites de la tabla 5. Todo equipo de combustión nuevo deberá cumplir con los límites de emisiones de óxidos de nitrógeno consignados en la tabla 5.

5.5 La operación de soplado que requieren los equipos de combustión de proceso continuo que utilicen combustibles sólidos o líquidos, deberá efectuarse con una frecuencia de por lo menos una vez por turno o de acuerdo a las especificaciones del fabricante. El tiempo de soplado no deberá exceder de 25 min por soplador o deshollinador, cuando se trate de equipos con capacidad mayor a 43 000 MJ/h y de 10 min para los menores.

5.6 Los combustibles que se distribuyan en México deberán cumplir con la calidad ecológica necesaria para cumplir con los límites máximos permisibles de contaminantes establecidos en esta norma. Las empresas que suministren combustibles sólidos y líquidos deberán certificar en las facturas de embarque de éstos, el contenido de azufre expresado en por ciento en peso. La descarga de bióxido de azufre a la atmósfera de equipos que usen combustibles gaseosos, sólidos y líquidos o cualquiera de sus combinaciones, se calculará con base en el consumo mensual de éstos y al contenido de azufre certificado por el proveedor.

Para efectos de verificación y en su caso, de sanción, el nivel de emisión se calculará mediante la ecuación 4:

Ecuación 4

$$Ne = \frac{\sum Qi \cdot FEC \cdot FCi}{\sum Qi \cdot FCi}$$

i = Número de combustibles/equipos que se utilizan.

Qi = Cantidad de combustible consumido en un equipo durante un periodo determinado. FECi = Factor de emisiones específico al tipo de combustible, según datos de la tabla 3.

FCi = Factor de emisiones específico al tipo de combustible, seguir datos de la tabla s FCi = Factor de conversión para obtener el nivel de emisiones en kg de SO₂/10⁶ kcal.

Ne = Nivel de emisión.

Tabla 3

Combustible	Factor de emisión kg de SO₂/10 ⁶ kcal
Combustóleo con 1% en peso de azufre	2.04
Combustóleo con 2% en peso de azufre	4.08
Combustóleo con 4% en peso de azufre	8.16
Diesel con 0.5% en peso de azufre	0.91
Gas natural	0 (Cero)

Para los combustibles que no están contemplados en esta tabla, el factor de emisión se calculará de acuerdo a la ecuación 5.

Ecuación 5

$$\text{Factor de emisión} = \frac{\frac{\%S}{100} \left[\frac{kg_S}{kg_{combustible}}\right] 2 \left[\frac{kgSO_2}{kgs}\right]}{\text{Poder calorífico} \left[\frac{10^6 kcal}{kg_{combustible}}\right]} = \left[\frac{kgSO_2}{10^6 kcal}\right]$$

% S = % en peso de azufre del combustible.

6. Requisitos y condiciones para la operación de los equipos de combustión.

6.1 Requisitos.

6.1.1 Los responsables de los equipos de combustión de las fuentes fijas referidas en esta Norma Oficial Mexicana deben observar, según proceda, los siguientes requisitos de operación:

6.1.1.1 Llevar una bitácora de operación y mantenimiento de los equipos de combustión, medición y análisis de las emisiones y de los certificados de calidad del combustible empleado.

6.1.1.2 La bitácora deberá tener como mínimo la siguiente información:

Control de operación: fecha, turno, hora de reporte, presión de vapor, temperatura de gases, temperatura del agua de alimentación, temperatura y presión de combustión, color de humo, purga de fondo, purga de nivel, disparo válvula de seguridad, consumo de combustible. Controles: de presión, bomba agua de alimentación paro y arranque, paro por fallo de flama.

Control de emisiones contaminantes: eficiencia, temperatura de gases, aire en exceso, O₂, CO₂, opacidad de humo, datos del combustible empleado según certificado, análisis de emisiones según tabla 6: densidad de humo, partículas (PST), bióxido de azufre, óxidos de nitrógeno y análisis de agua de alimentación.

6.1.1.3 La medición y análisis de las emisiones deben realizarse con la frecuencia y métodos que se indican en la tabla 6.

- **6.1.1.4** Los métodos equivalentes a que se refiere la tabla 6 tendrán que ser los que se consideran en el anexo 3 de esta Norma Oficial Mexicana, o algún otro que demuestre la misma precisión con previa autorización de la autoridad competente. **6.2** Condiciones.
- **6.2.1** Los niveles máximos permisibles de emisión a la atmósfera establecidos en las tablas 4 y 5 de la presente Norma Oficial Mexicana sólo podrán rebasarse en el caso de:
- **6.2.1.1** Operaciones de arranque del equipo de combustión, siempre que no excedan 15 min y la operación no se repita más de dos veces al día en equipos de capacidad menor a 43 000 MJ/h y 18 h para alcanzar la máxima carga o capacidad en los equipos mayores de 43 000 MJ/h.

Cuando por las características de los procesos y/o de los equipos de combustión se justifique técnicamente que se requiere mayor tiempo para su arranque, lo deberán comunicar a la autoridad competente.

- 6.2.1.2 Operaciones de soplado, siempre y cuando se ajusten a lo establecido en el punto 5.5 de esta norma.
- **6.2.2** Para los efectos de cuantificación de las emisiones de humos, partículas suspendidas totales, bióxido de azufre y óxidos de nitrógeno deben seguirse los procedimientos establecidos en las Normas Mexicanas correspondientes, o en su caso, los que establezca la autoridad competente.
- **6.2.3** Cuando por una chimenea confluyan otras corrientes gaseosas para ser descargadas a la atmósfera conjuntamente con las generadas por las de combustión, la medición de las emisiones deberá realizarse por separado.
- **6.2.4** En el caso de que no se cuente con las especificaciones sobre la capacidad nominal del equipo de combustión, ésta se determinará mediante la ecuación 6.

Ecuación 6 $H_N = Hc \cdot V$

H_N = Capacidad térmica del equipo de combustión, expresada en megajoules por hora, (MJ/h).
 Hc = Poder calorífico del combustible empleado, expresado en megajoules por kilogramo, (MJ/kg).

V = Consumo de combustible, expresado en kilogramos por hora, (kg/h).

Tabla 4. 1994 al 31 de diciembre de 1997

				1007 01	or de dic		<u>uc 1007</u>					
Capacidad del equipo de	Tipo de combustible			Partículas (PST) mg/m³ (kg/10 ⁶ kcal) (1) (2)			Bióxido de azufre ppm V (kg/10 ⁶ kcal) (1) (2)			Óxidos de nitrógeno ppm V (kg/10 ⁶ kcal) (1) (2)		
combustión MJ/m	empleado	Número de mancha u opacidad	ZMCM	ZC	RP	ZMCM	ZC (5)	RP	ZMCM	ZC (3)	RP	combustión % volumen (4)
	Combustóleo o gasóleo	4	NA	NA	NA	1 100 (4.08)	2 100 (7.80)	2 600 (9.81)	NA	NA	NA	
Hasta 5 250	Otros Iíquidos	3	NA	NA	NA	1 100 (4.08)	2 100 (7.81)	2 600 (9.81)	NA	NA	NA	60
	Gaseosos	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	
De 5 250 a	Líquidos	NA	100 (0.142)	425 (0.604)	600 (0.852)	1 100 (4.08)	2 100 (7.80)	2 600 (9.81)	220 (0.588)	300 (0.801)	400 (1.203)	50
43 000	Gaseosos	NA	NA	NA	NA	NA	NA	NA	220 (0.563)	300 (0.767)	400 (1.023)	50
De 43 000 a	Líquidos	NA	100 (0.142)	425 (0.604)	550 (0.781)	1 100 (4.08)	2 100 (7.81)	2 600 (9.81)	180 (0.481)	300 (0.801)	400 (1.203)	40
110 000	Gaseosos	NA	NA	NA	NA	NA	NA	NA	180 (0.460)	300 (0.767)	400 (1.023)	40
	Sólidos	NA	70 (0.105)	325 (0.496)	435 (0.664)	1 100 (4.32)	2 100 (8.24)	2 600 (9.81)	160 (9.81)	280 (0.785)	400 (1.122)	
Mayor de 110 000	Líquidos	NA	70 (0.099)	325 (0.462)	500 (0.710)	1 100 (4.12)	2 100 (7.81)	2 600 (9.81)	160 (0.427)	280 (0.748)	400 (1.069)	30
	Gaseosos	NA	NA	NA	NA	NA	NA	NA	160 (0.409)	280 (0.716)	400 (1.023)	

6.2.5 Cuando se utilicen simultánea o alternadamente dos o más combustibles sólidos, líquidos o gaseosos, la capacidad nominal del equipo de combustión se determinará mediante la ecuación 7.

Ecuación 7 $Hp_{N} = \frac{H_{C1} \cdot V_{1} + H_{C2} \cdot V_{2} + ... + H_{Cn} \cdot V_{n}}{V_{1} + V_{2} + ... + V_{n}}$

HpN = Capacidad térmica ponderada del equipo de combustión, expresada en megajoules por hora (MJ/h).

H_{C1} = Poder calorífico de cada uno de los combustibles empleados, expresado en megajoules por kilogramo (MJ/kg).

V_i = Consumo de cada combustible, expresado en kilogramos por hora (kg/h).

i = 1,2,..., n en donde "n" es el número de combustibles usados en un mismo equipo de combustión.

Para la presente Norma Oficial Mexicana se consideran los poderes caloríficos de los combustibles fósiles sólidos, líquidos y gaseosos indicados en el anexo 4. Notas y significados de siglas en anexo 1.

Tabla 5. 1° de enero de 1998 en adelante

Capacidad del equipo	Tipo de	Delisidad			(PST) mg/m ³ (kg/10 ⁶ kcal) (1) (2)		Bióxido de azufre ppm V (kg/10 ⁶ kcal) (1) (2)			Óxidos de nitrógeno ppm V (kg/10 ⁶ kcal) (1)		
de combustible combustión empleado MJ/m		Número de mancha u opacidad	ZMCM	ZC (3)	RP	ZMCM		RP	combustión % volumen (4)			
	Combustóleo o gasóleo	3	NA	NA	NA	550 (2.04)	1 100 (4.08)	2 200 (8.16)	NA	NA	NA	
Hasta 5 250	Otros Iíquidos	2	NA	NA	NA	550 (2.04)	1 100 (4.08)	2 200 (8.16)	NA	NA	NA	50
	Gaseosos	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	1
De 5 250 a	Líquidos	NA	75 (0.106)	350 (0.426)	450 (0.568)	550 (2.04)	1 100 (4.08)	2 200 (8.16)	190 (0.507)	190 (0.507)	375 (1.0)	40
43 000	Gaseosos	NA	NA	NA	NA	NA	NA	NA	190 (0.486)	190 (0.486)	375 (0.959)	40
De 43 000 a	Líquidos	NA	60 (0.805)	300 (0.426)	400 (0.568)	550 (2.04)	1 100 (4.08)	2 200 (8.16)	190 (0.294)	190 (0.294)	375 (1.0)	30
110 000	Gaseosos	NA	NA	NA	NA	NA	NA	NA	190 (0.281)	190 (0.281)	375 (0.959)	30
	Sólidos	NA	60 (0.090)	250 (0.375)	350 (0.525)	550 (2.16)	1 100 (4.31)	2 200 (8.16)	190 (0.309)	190 (0.309)	375 (1.052)	
Mayor de 110 000	Líquidos	NA	60 (0.085)	250 (0.355)	350 (0.497)	550 (2.04)	1 100 (4.08)	2 200 (8.16)	190 (0.294)	190 (0.294)	375 (1.0)	25
	Gaseosos	NA	NA	NA	NA	NA	NA	NA	190 (0.281)	190 (0.281)	375 (0.959)	

Notas y significados de siglas en Anexo 2.

Tabla 6

Medición y análisis de gases de combustión

Medición y análisis de gases de combustión				
Capacidad del equipo de combustión MJ/m	Parámetro	Frecuencia mínima de medición	Tipo de evaluación	Tipo de combustible
	Densidad de humo	1 vez cada 3 meses	puntual (3 muestras); mancha de hollín	líquido y gas
Hasta 5 250	CO ₂ , CO, O ₂ , N ₂	1 vez cada 3 meses	puntual (3 muestras); ver anexo 3	líquido y gas
	SO ₂	1 vez cada 3 meses	medición indirecta a través de certificados de calidad de combustibles que emita el proveedor	líquido
	Partículas suspendidas totales	una vez al año	isocinético (mínimo durante 60 minutos); 2 muestras definitivas (2)	líquido
De 5 250 a	NOx	una vez al año	continuo (4); quimioluminiscencia o equivalente	líquido y gas
43 000	SO ₂	una vez al año	medición indirecta a través de certificados de calidad de combustibles que emita el proveedor	líquido
	CO ₂ , CO, O ₂	diario	puntual (3 muestras); ver anexo 3 o equivalente	líquido y gas
	Partículas suspendidas totales	una vez al año	isocinético (mínimo durante 60 minutos); 2 muestras definitivas	líquido
De 43 000 a	NOx	1 vez cada 6 meses	continuo (4); quimioluminiscencia o equivalente	líquido y gas
110 000	SO ₂	una vez al año	medición indirecta a través de certificados de calidad de combustibles que emita el proveedor	líquido
	CO ₂ , CO, O ₂	una vez al año	puntual (3 muestras); ver anexo 3 o equivalente	líquido y gas
Mayor de 110 000	Partículas suspendidas totales	1 vez cada 6 meses	isocinético (mínimo durante 60 minutos); 2 muestras definitivas	sólido, líquido
	NO _x	permanente (3)	continuo (4); quimioluminiscencia o equivalente	sólido, líquido y gas
	O ₂	permanente	continúa; campo magnético o equivalente, con registrador como mínimo o equivalente	líquido y gas

SO ₂	una vez por año	medición indirecta a través de certificados de calidad de combustibles que emita el proveedor	sólido, líquido
-----------------	--------------------	---	-----------------

NOTAS:

- (1) Ver 6.1.1.4
- (2) Ver 6.1.1.5
- (3) El monitoreo continuo de NO_x será permanente en las zonas metropolitanas de las ciudades de México, Guadalajara y Monterrey; con una duración de cuando menos 7 días una vez cada 3 meses en las zonas críticas; y con una duración de cuando menos 7 días una vez cada seis meses en el resto del país.
- (4) Ver 4.13

Deberán realizarse las mediciones correspondientes a equipos de calentamiento industriales del ambiente de cualquier capacidad en enero y octubre de cada año.

Anexo 1

Notas:

(1) Concentraciones referidas a 25 °C, 760 mm Hg, 5% de oxígeno en volumen y base seca. Entre paréntesis se expresa el equivalente de la concentración en unidades de kg/10⁶ kcal.

El factor para corregir el O2 a la base del 5% de oxígeno, se calcula de acuerdo a la ecuación 7.

Ecuación 7

$$E_r = \frac{21 - O_r}{21 - O_m} \cdot E_m$$

E_r = Emisión calculada al valor de referencia del O₃

 $\begin{array}{lll} {\rm E_m} & = & {\rm Emisi\acute{o}n\ medida\ (NO_x\ o\ CO)} \\ {\rm O_m} & = & {\rm Valor\ medido\ para\ el\ O_2} \\ {\rm O_r} & = & {\rm Nivel\ de\ referencia\ para\ el\ O_2} \end{array}$

- (2) Los valores de emisión de partículas, bióxido de azufre y óxidos de nitrógeno podrán ser determinados con promedios ponderados de fuente fija, haciendo uso del procedimiento descrito en el punto 5.2 de esta norma.
- (3) Se refiere únicamente a las zonas Metropolitanas de Monterrey y Guadalajara y a las Ciudades de Tijuana, Baja California y Cd. Juárez, Chihuahua.
- (4) Determinado con la siguiente ecuación y medido antes del precalentador de aire o de cualquier infiltración que diluya los gases de combustión: EA = (O₂ 0.5CO)100/(0.264N₂ O₂ + 0.5CO); donde: O₂, CO y N₂, corresponden al porciento en volumen de oxígeno, monóxido de carbono y nitrógeno respectivamente contenidos en los gases de combustión en base seca.
- (5) Para efectos del cumplimiento de los límites del bióxido de azufre, el corredor industrial Tampico-Madero-Altamira en el estado de Tamaulipas deberá cumplir con el valor establecido para el resto del país.

Anexo 2

Notas:

(1) Concentraciones referidas a 25 °C, 760 mm Hg, 5% de oxígeno en volumen y base seca. Entre paréntesis se expresa el equivalente de la concentración en unidades de kg/10⁶ kcal.
 El factor para corregir el O₂ a la base del 5% de oxígeno, se calcula de acuerdo a la ecuación 7.

Ecuación 7

$$\boldsymbol{E}_r = \frac{21 - O_r}{21 - O_m} \cdot \boldsymbol{E}_m$$

 E_r = Emisión calculada al valor de referencia del O_2

 $\begin{array}{ll} E_m = & \text{Emisi\'on medida (NO}_X \text{ o CO)} \\ O_m = & \text{Valor medido para \'el O}_2 \\ O_r = & \text{Nivel de referencia para \'el O}_2 \end{array}$

- (2) Los valores de emisión de partículas, bióxido de azufre y óxidos de nitrógeno podrán ser determinados con promedios ponderados de fuente fija, al hacer uso del procedimiento descrito en el punto 5.2 de esta norma.
- (3) Zonas críticas (especificadas en el punto 4.22 de esta norma).
- (4) Se refiere únicamente a las Zonas metropolitanas de las ciudades de Monterrey y Guadalajara y las ciudades de Tijuana, Baja California y Cd. Juárez, Chihuahua.
- (5) Determinado con la siguiente ecuación y medido antes del precalentador de aire o de cualquier infiltración que diluya los gases de combustión:
 - EA = $(O_2 0.5CO)100/(0.264N_2 O_2 + 0.5CO)$; donde O_2 , CO y N_2 , corresponden al porciento en volumen de oxígeno, monóxido de carbono y nitrógeno respectivamente contenidos en los gases de combustión en base seca.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Anexo 3

Contaminantes y sus métodos de evaluacion para fuentes fijas y métodos equivalentes

Contaminante	Método de evaluación	Método equivalente
Densidad de humo	* huella o mancha de hollín * opacidad	
Partículas suspendidas totales	* isocinético	
Óxidos de nitrógeno	* quimioluminiscencia * infrarrojo no dispersivo	* infrarrojo no dispersivo
Óxidos de carbono	* celdas electroquímicas* * orsat (O ₂ , CO ₂ y CO)	
Oxígeno	* celdas electroquímicas * paramagnéticos	* orsat (O ₂ , CO ₂ y CO) * óxidos de zirconio (celdas electroquímicas)
SO ₂	* medición indirecta a través de certificados de calidad de combustibles que emita el proveedor MJ/h	Capacidad Hasta 5 250: del equipo de *vía húmeda (torino) combustión *infrarrojo no dispersivo

^{*} Se calcula el valor dado que no se obtiene por medición directa.

Anexo 4

Poder calorifico

Combustible	MJ/kg de combustible
Gas natural	52
Gas LP	48
Butano	49
Isobutano	45
Propano	50
Butileno	49
Propileno	49
Metano	55
Petróleo diáfano	46
Gasolina	47
Diesel	48
Gasóleo	42
Combustóleo pesado	42
Combustóleo ligero	43
Carbón mineral	Variable
Coque de petróleo	31

Anexo 5

Tabla de equivalencias

	Unidad	х	=
MJ	megajoule	239	kcal
MJ	megajoule	0.277	kWh
kcal	kilocaloría	4.186 x 10 ⁻⁶	MJ
kcal	kilocaloría	1.162 x 10 ⁻³	kWh
kWh	kilovatio hora	3.6	MJ
kWh	kilovatio hora	860.4	kcal
kcal	kilocaloría	3.968	B.T.U.
B.T.U.	unidad térmica británica	0.252	kcal
C.C.	caballo caldera	35.3	MJ/h
MJ/h	megajoule	0.028	C.C.
S	azufre	2	SO ₂
SO ₂	bióxido de azufre	0.5	S

Clave	Descripción
PROY-NOM-163-SEM-ENER-	Emisiones de bióxido de carbono (CO ₂) provenientes del escape y su equivalencia en términos
SCF-2012	de rendimiento de combustible, aplicable a vehículos automotores nuevos de peso bruto
	vehicular de hasta 3 857 kilogramos.
IEEE 802.3-2008	IEEE Standard for Information technology-Specific requirements - Part 3: Carrier Sense
	Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer
	Specifications (ethernet) (norma IEEE para tecnología de la información – requisitos
	específicos – parte 3: acceso múltiple de detección de portadora con detección de colisiones (csma/cd) método de acceso y especificaciones de la capa física (ethernet)
IEEE 1159-2009	IEEE Recommended Practice for Monitoring Electric Power Quality (Práctica recomendada por
1222 1100-2000	IEEE para la Supervisión de la Calidad de la Energía Eléctrica)
NMX-CC-9001-IMNC-2008	Sistema de gestión de la calidad - requisitos
NMX-EC-17025-IMNC-2006	Requisitos generales para la competencia de los laboratorios de ensayo y de calibración
	(cancela a la NMXEC- 17025-IMNC-2000). Declaratoria de vigencia de las normas mexicanas
	NMX-AG-009-IMNC-2006, NMX-CH-049-IMNC-2006, NMX-CH-5725/5-IMNC-2006, NMX-EC-
	17025-IMNC-2006, NMX-EC-15189-IMNC-2006 y NMX-SAA-14015-IMNC-2006.
	Campo de aplicación
	Esta Norma Mexicana establece los requisitos generales para la competencia en la realización
	de ensayos o de calibraciones, incluido el muestreo. Cubre los ensayos y las calibraciones que
	se realizan utilizando métodos normalizados, métodos no normalizados y métodos
	desarrollados por el propio laboratorio. Esta norma mexicana es aplicable a todos los laboratorios, independientemente de la cantidad
	de empleados o de la extensión del alcance de las actividades de ensayo o de calibración.
	Concordancia con normas internacionales
	Esta Norma Mexicana es idéntica a la Norma Internacional ISO/IEC 17025:2005.
ISO 14001:2004 (traducción	1. Objeto y campo de aplicación
certificada)	Esta Norma Internacional especifica los requisitos para un sistema de gestión ambiental,
,	destinados a permitir que una organización desarrolle e implemente una política y unos
	objetivos que tengan en cuenta los requisitos legales y otros requisitos que la organización
	suscriba, y la información relativa a los aspectos ambientales significativos. Se aplica a
	aquellos aspectos ambientales que la organización identifica que puede controlar y aquel
	sobre los que la organización puede tener influencia. No establece por sí misma criterios de
	desempeño ambiental específicos. Esta Norma Internacional se aplica a cualquier organización que desee:
	a) establecer, implementar, mantener y mejorar un sistema de gestión ambiental;
	b) asegurarse de su conformidad con su política ambiental establecida;
	c) demostrar la conformidad con esta Norma Internacional por:
	La realización de una autoevaluación y autodeclaración, o
	2. La búsqueda de confirmación de dicha conformidad por las partes interesadas en
	la organización, tales como clientes; o
	3. La búsqueda de confirmación de su autodeclaración por una parte externa a la
	organización; o
	4. La búsqueda de la certificación/registro de su sistema de gestión ambiental por
	una parte externa a la organización.
	Todos los requisitos de esta Norma Internacional tienen como fin su incorporación a cualquier
	sistema de gestión ambiental. Su grado de aplicación depende de factores tales como la
	política ambiental de la organización, la naturaleza de sus actividades, productos y servicios y
	la localización donde y las condiciones en las cuales opera.
ISO 216:2007 (DIN 476)	Writing paper and certain classes of printed matter Trimmed sizes A and B series, and
	indication of machine direction (papel para escritura y ciertas clases de material impreso –
ISO 9001:2008	tamaños normalizados – serie A y B, y la indicación de dirección de máquina). Es la base del sistema de gestión de la calidad ya que es una norma internacional y que se
130 900 1.2008	centra en todos los elementos de administración de calidad con los que una empresa debe
	contar para tener un sistema efectivo que le permita administrar y mejorar la calidad de sus
	productos o servicios. Los clientes se inclinan por los proveedores que cuentan con esta
	acreditación porque de este modo se aseguran de que la empresa seleccionada disponga de
	un buen sistema de gestión de calidad (SGC).
	1 Objeto y campo de aplicación
	1.1 Generalidades
	Esta Norma Internacional especifica los requisitos para un sistema de gestión de la calidad,
	cuando una organización:
	a) necesita demostrar su capacidad para proporcionar regularmente productos que
I	satisfagan los requisitos del cliente y los legales y reglamentarios aplicables, y

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave	Descripción
	b) aspira a aumentar la satisfacción del cliente a través de la aplicación eficaz del sistema,
	incluidos los procesos para la mejora continua del sistema y el aseguramiento de la
	conformidad con los requisitos del cliente y los legales y reglamentarios aplicables.
	NOTA En esta Norma Internacional, el término "producto" se aplica únicamente a:
	a) el producto destinado a un cliente o solicitado por él,
	b) cualquier resultado previsto de los procesos de realización del producto.
	1.2 Aplicación
	Todos los requisitos de esta Norma Internacional son genéricos y se pretende que sean aplicables a todas las organizaciones sin importar su tipo, tamaño y producto suministrado.
	Cuando uno o varios requisitos de esta Norma Internacional no se puedan aplicar debido a la
	naturaleza de la organización y de su producto, pueden considerarse para su exclusión. Cuando se realicen exclusiones, no se podrá alegar conformidad con esta Norma Internacional
	a menos que dichas exclusiones queden restringidas a los requisitos expresados en el
	Capítulo 7 y que tales exclusiones no afecten a la capacidad o responsabilidad de la organización para proporcionar productos que cumplan con los requisitos del cliente y los legales y reglamentarios aplicables.
NOM-008-NUCL-2011	Control de la contaminación radiactiva.
NOM-001-SCFI-1993	Aparatos electrónicos de uso doméstico alimentados por diferentes fuentes de energía eléctrica-Requisitos de seguridad y métodos de prueba para la aprobación de tipo.
NOM-003-SCFI-2000	Productos eléctricos-especificaciones de seguridad.
NOM-008-SCFI-2002	Sistema general de unidades de medida.
140141-000-301 1-2002	La elaboración de esta Norma Oficial Mexicana se basó principalmente en las resoluciones y
	acuerdos que sobre el Sistema Internacional de Unidades (SI) se han tenido en la Conferencia
	General de Pesas y Medidas (CGPM), hasta su 22a. Convención realizada en el año 2003.
	[Modificación publicada en el DOF el 24 de septiembre de 2009]
	Esta Norma Oficial Mexicana establece las definiciones, símbolos y reglas de escritura de las
	unidades del Sistema Internacional de Unidades (SI) y otras unidades fuera de este Sistema
	que acepte la CGPM, que en conjunto, constituyen el Sistema General de Unidades de
	Medida, utilizado en los diferentes campos de la ciencia, la tecnología, la industria, la
	educación y el comercio.
	Sistema de unidades que establece magnitudes de:
	Espacio, tiempo, de fenómenos periódicos y conexos, de mecánica, de calor, de electricidad y
	magnetismo, de luz y radiaciones electromagnéticas, de acústica, de físico-química y física
	molecular, de física atómica y física nuclear, de reacciones nucleares y radiaciones ionizantes,
	unidades que se conservan, unidades que pueden usarse temporalmente y unidades que no deben utilizarse con el SI.
NOM-016-SCFI-1993	Aparatos electrónicos de uso en oficina y alimentados por diferentes fuentes de energía
NOM-016-3CF1-1993	eléctrica - Requisitos de seguridad y métodos de prueba. (Se ratifica por cinco años según
	resolución publicada en el D. O. F. El 29/06/2005)
NOM-040-SCFI-1994	Instrumentos de medición-instrumentos rígidos reglas graduadas para medir longitud- uso
110111 040 0011 1004	comercial.
NOM-046-SCFI-1999	Instrumentos de medición-cintas métricas de acero y flexómetros (esta norma cancela a la
	norma oficial mexicana NOM-046-SCFI-1999, instrumentos de medición-cintas métricas de
	acero y flexómetros, y su aclaración.
NOM-058-SCFI-1999	Productos eléctricos-balastros para lámparas de descarga eléctrica en gas-especificaciones de
	seguridad. (se ratifica la presente NOM, según resolución publicada el 01/11/2005 en el D. O.
	F.)
NOM-063-SCFI-2001	Productos eléctricos – conductores – requisitos de seguridad.
NOM-064-SCFI-2000	Productos eléctricos-luminarios para uso en interiores y exteriores-especificaciones de
	seguridad y métodos de prueba.
NOM-093-SCFI-1994	Válvulas de relevo de presión (seguridad, seguridad-alivio y alivio) operadas por resorte y piloto; fabricadas de acero y bronce.
PROY-NOM-080-SCT1-1994	Diagramas, gráficas y tablas utilizadas en electrónica. Parte 1. Definiciones y clasificación.
PROY-NOM-089-SCT1-1994	Diagramas, gráficas y tablas utilizadas en electrónica. Parte 2. Identificación de elementos.
PROY-NOM-010-SCT3-94	Que regula el procedimiento pro-abatimiento de ruido sobre la ciudad de México.
NOM-036-SCT3-2000	Que establece dentro de la república mexicana los límites máximos permisibles de emisión de
	ruido producido por las aeronaves de reacción subsónicas, propulsadas por hélice,
	supersónicas y helicópteros, su método de medición, así como los requerimiento de calibración
	de equipos.
NOM-001-SEDE-2012	Instalaciones eléctricas (utilización). Sustituye a la NOM-001-SEDE-2005
NOM-002-SEDE-2010	Requisitos de seguridad y eficiencia energética para transformadores de distribución.
NOM-004-SEDG-2004	Instalaciones de aprovechamiento de gas LP diseño y construcción.
NOM-011/1-SEDG-1999	Condiciones de seguridad de los recipientes portátiles para contener gas LP en uso.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave	Descripción
	Objetivo y campo de aplicación
	Esta Norma Oficial Mexicana establece las condiciones mínimas de seguridad de los recipientes portátiles para contener Gas LP en uso, con el fin de proporcionar el servicio en la distribución del Gas LP por medio de esos envases; asimismo, las especificaciones para el marcado que identifica al distribuidor propietario del recipiente y los procedimientos para la
	evaluación de la conformidad.

- 4. Valoración de las condiciones de seguridad de los recipientes portátiles
- **4.1** Las condiciones de seguridad de los recipientes portátiles deben valorarse previo al llenado de Gas LP, conforme al procedimiento interno del distribuidor, los resultados de las valoraciones deben asentarse diariamente en libro bitácora.
- **4.2** No deben ser llenados con Gas LP los recipientes portátiles que presenten las siguientes características:
- **4.2.1** Válvula. Cuando presente golpe y/o fuga, no tenga volante o se detecte falla visible en el dispositivo de relevo de presión.
- 4.2.2 Cuello protector. Cuando por su estado físico no proteja y/o impida la operación de la válvula.
- 4.2.3. Base de sustentación.
- 4.2.3.1 Cuando por su estado físico o deterioro no sostenga verticalmente al recipiente portátil.
- **4.2.3.2** Cuando uno o más de los cuatro cordones de soldadura que unen la base de sustentación al casquete inferior del recipiente, se encuentre desprendido.
- 4.2.4 Pintura. Cuando se presenten signos de corrosión en el recipiente portátil.
- **4.3** Deben ser retirados del servicio para su inutilización los recipientes portátiles que presenten las siguientes características:
- **4.3.1** Abolladura. Cuando el recipiente portátil presente abolladura en la sección cilíndrica y/o casquetes, con una profundidad superior al 10% del diámetro mayor de la abolladura o cuando ocurra en un cordón de soldadura y la profundidad sea superior a 6.35 mm (ver figura A, detalle A).
- **4.3.2** Protuberancia o abombado. Cuando el recipiente portátil presente protuberancia o signos de abombado en la sección cilíndrica y casquete.
- **4.3.3** Incisión o cavidad. Cuando el recipiente portátil presente incisión o cavidad en la lámina de la sección cilíndrica y/o casquetes, con una longitud mayor a 75 mm y/o en algún punto presente una profundidad mayor a 0.6 mm en los recipientes portátiles con capacidad de 10, 20 y 30 kg, así como mayor a 0.8 mm en los recipientes portátiles con capacidad de 45 kg (ver figura C y D).
- **4.3.4** Corrosión. Cuando el recipiente portátil presente picadura por corrosión en la lámina de la sección cilíndrica y casquetes y su profundidad sea mayor a 0.6 mm en los recipientes portátiles con capacidad de 10, 20 y 30 kg, así como mayor a 0.8 mm en los recipientes portátiles con capacidad de 45 kg (ver figura A, detalle B).
- **4.3.5** Grieta. Cuando en el recipiente portátil se detecte cualquier grieta externa, sin importar su longitud ni profundidad, en la lámina de la sección cilíndrica y casquetes, en la soldadura del medio cople o en el medio cople, en los cordones de soldadura longitudinal o circunferencial y en las uniones del recipiente con el cuello protector y base de sustentación.
- 4.3.6 Cuando el recipiente portátil presente evidencia visual de haber sido expuesto al fuego.
- 4.4 Etapa de valoración.
- **4.4.1** Él 100% de los recipientes portátiles debe ser revisado visualmente previo a su llenado con gas LP, retirando del servicio para su inutilización los que presenten protuberancia, abombado o grieta.
- **4.4.2** Adicionalmente a lo establecido en el numeral 4.4.1 de esta norma, en plantas de almacenamiento para distribución con llenado promedio diario de hasta 1000 recipientes portátiles, el 10% de esos recipientes debe ser valorado diariamente respecto de abolladuras, incisiones, cavidades y corrosión, retirando del servicio para su inutilización los que presenten anomalías establecidas en los numerales 4.3.1, 4.3.3 y 4.3.4 de esta norma. En plantas de almacenamiento para distribución con llenado promedio diario mayores a 1000 recipientes portátiles, el tamaño del lote a valorarse debe ser de 200 recipientes por día.
- **4.4.2.1** Previo a la valoración de los recipientes portátiles, éstos deben limpiarse de herrumbre, suciedad o pintura apelmazada que se encuentre adherida a su superficie de forma suelta.
- **4.5** Queda prohibido efectuar reparaciones a la sección cilíndrica y casquetes (superior e inferior) de los recipientes portátiles, que impliquen calentamiento y golpes en la lámina, soldadura o cortes.
- Se permite la aplicación de soldadura en los casquetes (superior e inferior), exclusivamente para el cambio de cuello protector y base de sustentación.
- 8. Procedimiento para la evaluación de la conformidad
- 8.1 Para efectos de este procedimiento, los siguientes términos se entenderán como se describen a continuación:
- 8.1.1 DGGIE. A la Dirección General de Gas LP y de Instalaciones Eléctricas de la Secretaría de Energía.
- 8.1.2 Ley. A la Ley Federal sobre Metrología y Normalización.
- 8.1.3 Distribuidor. Al titular de un permiso de distribución mediante planta de almacenamiento para distribución.
- **8.1.4** Evaluación de la conformidad. A la determinación del grado de cumplimiento con esta Norma Oficial Mexicana mediante verificación.
- **8.1.5** Verificación. A la constatación ocular o comprobación mediante medición que se realiza para evaluar la conformidad con esta Norma Oficial Mexicana.
- **8.1.6** Dictamen. Al documento que emite la Unidad de Verificación mediante el cual se determina el grado de cumplimiento con esta Norma Oficial Mexicana.
- **8.1.7** Unidad de Verificación. A la persona física o moral acreditada y aprobada conforme a la Ley, que realiza actos de verificación.
- 8.2 Procedimiento.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Artículo 1. El presente procedimiento es aplicable a la evaluación de la conformidad con esta Norma Oficial Mexicana.

Artículo 2. Valoración de las condiciones de seguridad de los recipientes portátiles.

- I. La valoración de las condiciones de seguridad de los recipientes portátiles se debe efectuar por los distribuidores, previo al llenado de Gas LP
- II. El distribuidor debe contar con procedimiento interno establecido por la empresa, para la valoración de las condiciones de seguridad de los recipientes portátiles y registrar en libro bitácora los resultados de dichas valoraciones.

Artículo 3. Evaluación de la conformidad a petición de parte.

Los distribuidores deben requerir, anualmente, la evaluación de la conformidad con esta Norma Oficial Mexicana y conservar el original del dictamen, el que deberá estar a la disposición de la DGGIE o de otra autoridad competente conforme a sus atribuciones.

- a) La evaluación de la conformidad a petición de parte se obtendrá de las Unidades de Verificación.
- b) El interesado obtendrá el directorio de Unidades de Verificación en la Oficialía de Partes de la DGGIE, ubicada en Insurgentes Sur 890, planta baja, colonia Del Valle, código postal 03100, México D.F. (edificio sede) o de la página de la Secretaría de Energía, vía Internet, en la siguiente dirección www.energia.gob.mx sección servicios y trámites, módulo-trámites del público y requisitos referentes al Gas LP
- c) Los gastos que se originen de las verificaciones a petición de parte, serán a cargo del distribuidor.

Artículo 4. Evaluaciones de la conformidad de seguimiento.

- I. Las evaluaciones de la conformidad de seguimiento se podrán efectuar por parte de la DGGIE.
- a) Las evaluaciones de la conformidad de seguimiento podrán realizarse en cualquier momento.
- b) Las evaluaciones de la conformidad se llevarán a cabo en las plantas de almacenamiento para distribución, bodegas de distribución de Gas LP en recipientes portátiles y vehículos de reparto de Gas LP en recipientes portátiles.

Artículo 5. El acta circunstanciada levantada en la verificación o el dictamen, deben hacer constar como mínimo:

- · La fecha de la evaluación.
- Si el distribuidor cuenta con procedimiento interno para la valoración de las condiciones de seguridad de los recipientes portátiles y libro bitácora en donde se asientan los resultados de dichas valoraciones.
- Si la valoración de las condiciones de seguridad de los recipientes portátiles se lleva a cabo previo al llenado de Gas LP, y conforme al procedimiento establecido por el distribuidor.
- La fecha de la última evaluación de la conformidad con esta Norma, a petición de parte.
- · La cantidad de recipientes valorados en la verificación.

La verificación se llevará a cabo seleccionando como mínimo uno de cada 10 recipientes portátiles que se encuentren en el sitio y deben ser seleccionados por la persona que lleva a cabo la verificación.

- El marcado con la marca comercial conforme a lo establecido en el numeral seis de esta Norma Oficial Mexicana.
- · Los resultados de la verificación de los recipientes.

Artículo 6. En aquellos casos en los que del resultado de la evaluación de la conformidad se determine incumplimiento a esta Norma Oficial Mexicana o cuando la misma no pueda llevarse a cabo por causa imputable al distribuidor, la Unidad de Verificación dará aviso inmediato a la DGGIE, sin perjuicio de las sanciones que procedan.

Clave	Descripción
NOM-012/3-SEDG-2003	Recipientes a presión para contener gas LP, tipo no portátil, destinados a ser colocados a la
	intemperie en estaciones de gas LP para carburación e instalaciones de aprovechamiento.
	Fabricación.
	Objetivo
	Esta Norma Oficial Mexicana establece las especificaciones mínimas y métodos de prueba que se
	deben cumplir en la fabricación de recipientes sujetos a presión para contener gas LP, tipo no
	portátil, no expuestos a calentamiento por medios artificiales, destinados a ser colocados a la
	intemperie en estaciones de gas LP para carburación e instalaciones de aprovechamiento final de
	Gas LP, con una capacidad nominal desde 100 litros y hasta 5 000 litros de agua (tipo B1 y B2),
	así como el procedimiento para la evaluación de la conformidad correspondiente.

5. Métodos de prueba

5.1 Prueba hidrostática. Los recipientes motivo de esta Norma deben someterse a una presión hidrostática de 1.3 veces su presión de diseño, como mínimo, la cual en ningún caso debe exceder el 90% del esfuerzo límite de cedencia del material. Esta prueba debe efectuarse al 100% de los recipientes.

5.1.1 Aparatos y equipos.

- a) Dispositivo hidráulico que proporcione una presión de 2.23 MPa (22.8 kgf/cm²), como mínimo.
- b) Medidor indicador de presión analógico de carátula (manómetro), el cual debe estar graduado para un alcance de entre 1.5 veces y 4 veces la presión de prueba máxima. Pueden emplearse medidores de presión de lectura digital que tengan un alcance más amplio, siempre y cuando las lecturas den el mismo o mayor grado de exactitud que el obtenido con medidores de presión analógicos de carátula.

5.1.2 Procedimiento.

Una vez que el recipiente ha sido llenado completamente con agua, debe elevarse la presión hidrostática a por lo menos 1.3 veces la presión de diseño, durante el tiempo necesario para inspeccionar si existen fugas en el material base o en las iuntas soldadas.

- 5.1.3 Resultado. El recipiente no debe presentar fugas, defectos en el material base ni deformaciones permanentes.
- **5.2** Prueba neumática. Los recipientes con sus válvulas instaladas deben someterse a una presión neumática de 0.686 MPa (7 kgf/cm²), como mínimo. Esta prueba debe efectuarse al 100% de los recipientes.

5.2.1 Aparatos y equipos.

a) Compresor.

- b) Medidor indicador de presión analógico de carátula (manómetro), graduado conforme a lo indicado en el numeral 5.1.1, inciso b).
- **5.2.2** Procedimiento. Se elimina completamente el agua y cualquier materia extraña que pudiera contener el recipiente, se instalan todos sus accesorios de control y seguridad, se aplica una presión neumática mínima de 0.686 MPa (7 kgf/cm²) y se coloca jabonadura en todas las conexiones y accesorios, verificando que no existan fugas. Esta prueba puede realizarse sumergiendo el recipiente en agua.
- 5.2.3 Resultado. El recipiente no debe presentar fugas en las juntas soldadas ni en los accesorios instalados.

Clave	Descripción
NOM-019-SEDG-2002	Aparatos domésticos para cocinar alimentos que utilizan gas LP o gas natural-especificaciones y métodos de prueba. (cancela y sustituye a la norma oficial mexicana NOM-023-SCFI-1993)
NOM-020-SEDG-2003	Calentadores para agua que utilizan como combustible gas LP o natural, de uso doméstico y comercial. Requisitos de seguridad, métodos de prueba y marcado.
NOM-001-SEMARNAT-1996	Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales.
NOM-002-SEMARNAT-1996	Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a los sistemas de alcantarillado.
NOM-003-SEMARNAT-1997	Que establece los límites máximos permisibles de contaminantes para las aguas residuales tratadas que se reúsen en servicios al público.
NOM-034-SEMARNAT-1993	Que establece los métodos de medición para determinar la concentración de monóxido de carbono en el aire ambiente y los procedimientos para la calibración de los equipos de medición. Objetivo:
	Esta Norma oficial establece los métodos de medición para determinar la concentración de monóxido de carbono (CO) en el aire ambiente y los procedimientos para la calibración de los equipos de medición. Campo de aplicación:
	Esta Norma Oficial Mexicana es de observancia obligatoria en la operación de los equipos, estaciones o sistemas de monitoreo de calidad del aire con fines de difusión o información al público o cuando los resultados tengan validez oficial.

6.1 El método de referencia para determinar la concentración de monóxido de carbono en el aire ambiente, es el de absorción infrarroja por medio de un fotómetro no dispersivo.

$$(CO)_{sal} = \frac{(CO) ptn \cdot Fco}{(Fo + Fco)}$$

(CO)_{sal} = concentración de monóxido de carbón diluido en el múltiple de salida en ppm.

(CO)ptn = concentración de monóxido de carbón patrón sin diluir en ppm

Fco = velocidad de flujo de monóxido de carbono patrón corregida a 25 °C y 760 mmHg en L/min Fo = velocidad de flujo de monóxido del aire de dilución corregida a 25 °C y 760 mmHg en L/min

Clave	Descripción
NOM-035-SEMARNAT-1993	Que establece los métodos de medición para determinar la concentración de partículas suspendidas totales en el aire ambiente y el procedimiento para la calibración de equipos de medición.
NOM-036-SEMARNAT-1993	Que establece los métodos de medición para determinar la concentración de ozono en el aire ambiente y los procedimientos para la calibración de los equipos de medición.
NOM-038-SEMARNAT-1993	Que establece los métodos de medición para determinar la concentración de bióxido de azufre en el aire ambiente y los procedimientos para la calibración de los equipos de medición.
NOM-039-SEMARNAT-1993	Que establece los niveles máximos permisibles de emisión a la atmósfera de bióxido y trióxido de azufre y neblinas de ácido sulfúrico, en plantas productoras.
NOM-041-SEMARNAT-2006	Que establece los límites máximos permisibles de emisión de gases contaminantes provenientes del escape de los vehículos automotores en circulación que usan gasolina como combustible.
NOM-042-SEMARNAT-2003	Que establece los límites máximos permisibles de emisión de hidrocarburos totales o no metano, monóxido de carbono, óxidos de nitrógeno y partículas provenientes del escape de los vehículos automotores nuevos cuyo peso bruto vehicular no exceda los 3.857 toneladas.
NOM-043-SEMARNAT-1993	Que establece los niveles máximos permisibles de emisión a la atmósfera de partículas sólidas provenientes de fuentes fijas.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave	Descripción
NOM-044-SEMARNAT-2006	Que establece los límites máximos permisibles de emisión de hidrocarburos totales,
	hidrocarburos no metano, monóxido de carbono, óxidos de nitrógeno, partículas y opacidad
	de humo provenientes del escape de motores nuevos que usan diesel como combustible.
NOM-045-SEMARNAT-2006	Protección ambiental - vehículos en circulación que usan diesel como combustible - límites
	máximos permisibles de opacidad, procedimiento de prueba y características técnicas del
NOM 046 SEMADNAT 4002	equipo de medición. Que establece los niveles máximos permisibles de emisión a la atmósfera de bióxido de
NOM-046-SEMARNAT-1993	azufre, neblinas de trióxido de azufre y ácido sulfúrico, provenientes de procesos de
	producción de ácido dodecilbencensulfónico.
NOM-047-SEMARNAT-1999	Que establece las características del equipo y el procedimiento de medición para la
	verificación de los límites de emisión de contaminantes, provenientes de los vehículos
	automotores en circulación que usan gasolina, gas licuado de petróleo, gas natural como
	combustible.
NOM-048-SEMARNAT-1993	Que establece los niveles máximos permisibles de emisión de hidrocarburos, monóxido de
	carbono y humo, provenientes del escape de las motocicletas en circulación que utilizan
NOM-049-SEMARNAT-1993	gasolina o mescla gasolina-aceite como combustible. Que establece las características del equipo y el procedimiento de medición, para la
NOW-049-SEWARNA1-1993	verificación de los niveles de emisión de gases contaminantes, provenientes de las
	motocicletas en circulación que usan gasolina o mezcla de gasolina-aceite como
	combustible.
NOM-050-SEMARNAT-1993	Que establece los niveles máximos permisibles de emisión de gases contaminantes
	provenientes del escape de los vehículos automotores en circulación que usan gas licuado
	de petróleo, gas natural u otros combustibles alternos como combustible.
NOM-076-SEMARNAT-2012	Que establece los niveles máximos permisibles de emisión de hidrocarburos no quemados,
	monóxido de carbono y óxidos de nitrógeno provenientes del escape, así como de
NOM-077-SEMARNAT-1995	hidrocarburos evaporativos provenientes del sistema de combustible, que usan gasolina. Que establece el procedimiento de medición para la verificación de los niveles de emisión de
NOW-077-SEWARNAT-1995	la opacidad del humo proveniente del escape de los vehículos automotores en circulación
	que usan diesel como combustible.
NOM-079-SEMARNAT-1994	Que establece los límites máximos permisibles de emisión de ruido de los vehículos
	automotores nuevos en planta y su método de medición.
NOM-080-SEMARNAT-1994	Que establece los límites máximos permisibles de emisión de ruido proveniente del escape
	de los vehículos automotores, motocicletas y triciclos motorizados en circulación y su método
	de medición.
NOM-081-SEMARNAT-1994	Que establece los límites máximos permisibles de emisión de ruido de las fuentes fijas y su
	método de medición (se encuentra también como NOM-081-ECOL-1994, es la misma) Objeto
	Esta norma oficial mexicana establece los límites máximos permisibles de emisión de ruido
	que genera el funcionamiento de las fuentes fijas y el método de medición por el cual se
	determina su nivel emitido hacia el ambiente.
	Campo de aplicación
	Esta norma oficial mexicana se aplica en la pequeña, mediana y gran industria, comercios
	establecidos, servicios públicos o privados y actividades en la vía pública.
	Referencias
	NMX-AA-40 Clasificación de ruidos.
	NMX-AA-43 Determinación del nivel sonoro emitido por fuentes fijas.
	NMX-AA-59 Sonómetros de precisión.
	NMX-AA-62 Determinación de los niveles de ruido ambiental
NOM-082-SEMARNAT-1994	Que establece los límites máximos permisibles de emisión de ruido de las motocicletas y
NOM 085 SEMADNAT 2044	triciclos motorizados nuevos en planta y su método de medición.
NOM-085-SEMARNAT-2011	Contaminación atmosférica-niveles máximos permisibles de emisión de los equipos de combustión de calentamiento indirecto y su medición. Sustituye a la NOM-085-SEMARNAT-
	1994
NOM-086-SEMAR-SENER-	Especificaciones de los combustibles fósiles para la protección ambiental.
SCFI-2005	, , , , , , , , , , , , , , , , , , , ,
NOM-097-SEMARNAT-1995	Que establece los límites máximos permisibles de emisión a la atmósfera de material
	particulado y óxidos de nitrógeno en los procesos de fabricación de vidrio.
NOM-098-SEMARNAT-2002	Protección ambiental-incineración de residuos, especificaciones de operación y límites de
	emisión de contaminantes.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave	Descripción
NOM-105-SEMARNAT-1996	Que establece los niveles máximos permisibles de emisiones a la atmósfera de partículas
INGIN-100 GEMARINAT-1000	sólidas totales y compuestos de azufre reducido total provenientes de los procesos de
	recuperación de químicos de las plantas de fabricación de celulosa.
NOM-121-SEMARNAT-1997	Que establece los niveles máximos permisibles de emisión a la atmósfera de compuestos
	orgánicos volátiles (COVS) provenientes de las operaciones de recubrimiento de carrocerías
	nuevas en planta de automóviles, unidades de uso múltiple y de pasajeros.
NOM-123-SEMARNAT-1998	Que establece el contenido máximo permisible de compuestos orgánicos volátiles (COVS),
	en la fabricación de pinturas de secado al aire base disolvente para uso doméstico y los procedimientos para la determinación del contenido de los mismos en pinturas.
NOM-137-SEMARNAT-2003	Contaminación atmosférica plantas desulfuradoras de gas y condensados amargos
NOM-137-3EMARNA1-2003	control de emisiones de compuestos de azufre.
NOM-138-SEMARNAT/SS-2003	Límites máximos permisibles de hidrocarburos en suelos y las especificaciones para su
	caracterización y remediación.
PROY-NOM-138-	Proyecto de modificación a la norma oficial mexicana NOM-138-SEMARNAT/SS-2003,
SEMARNAT/SA1-2008	límites máximos permisibles de hidrocarburos en suelos y las especificaciones para su
	caracterización y remediación, para quedar como norma oficial mexicana NOM-138- SEMARNAT/SAI-2008.
NOM-147-SEMARNAT/SSA1-	Que establece criterios para determinar las concentraciones de remediación de suelos
2004	contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel,
	plata, plomo, selenio, talio y/o vanadio.
PROY-NOM-151-SEMARNAT-	Que establece las especificaciones técnicas para la protección del medio ambiente durante
2006	la construcción, operación y abandono de instalaciones eolo-eléctricas en zonas agrícolas,
NOM 000 SESU/SCEL 2040	ganaderas y eriales.
NOM-008-SESH/SCFI-2010	Recipientes transportables para contener gas LP especificaciones de fabricación, materiales y métodos de prueba.
NOM-009-SESH-2011	Recipientes para contener gas LP, tipo no transportable. Especificaciones y métodos de
	prueba.
PROY-NOM-011-SESH-2011	Calentadores para agua de uso doméstico y comercial que utilizan como combustible gas LP
	o gas natural requisitos de seguridad, especificaciones, métodos de prueba, marcado e
NO. 040 05011 0040	información comercial.
NOM-012-SESH-2010	Calefactores de ambiente para uso doméstico que empleen como combustible gas LP o natural. Requisitos de seguridad y métodos de prueba.
NOM-020-SSA1-1993	Salud ambiental. Criterio para evaluar la calidad del aire ambiente con respecto al ozono
	(O ₃). Valor normado para la concentración de ozono (O ₃) en el aire a en el aire ambiente
	como medida de protección a la salud de la población.
NOM-023-SSA1-1993	Salud ambiental. Criterio para evaluar la calidad del aire ambiente con respecto al bióxido de
	nitrógeno (NO ₂). Valor normado para la concentración de bióxido de nitrógeno (NO ₂) en el aire ambiente como medida de protección a la salud de la población
NOM-025-SSA1-1993,	Salud ambiental. Criterios para evaluar el valor límite permisible para la concentración de
1333,	material particulado. Valor límite permisible para la concentración de partículas suspendidas
	totales pst, partículas menores de 10 micrómetros pm10.
NOM-127-SSA1-1994	Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y
	tratamientos a que debe someterse el agua para su potabilización.
NOM-230-SSA1-2002	Salud ambiental. Agua para uso y consumo humano. Requisitos sanitarios que se deben
	cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo.
NOM-001-STPS-1999 (Actual)	Edificios, locales, instalaciones y áreas en los centros de trabajo-condiciones de seguridad e
(,	higiene. (NOM-001-STPS-1993 antigua)
	1 Objetivo
	Establecer las condiciones de seguridad e higiene que deben tener los edificios, locales,
	instalaciones y áreas en los centros de trabajo, para su funcionamiento y conservación, y
	para evitar riesgos a los trabajadores. 1.1 Campo de aplicación
	Requisitos de seguridad de escaleras, rampas, escalas, puentes y plataformas elevadas
NOM-004-STPS-1999	Sistemas de protección y dispositivos de seguridad en la maguinaria y equipo que se utilice
	en los centros de trabajo (actual).
	Objetivo
	Establecer las condiciones de seguridad y los sistemas de protección y dispositivos para
	prevenir y proteger a los trabajadores contra los riesgos de trabajo que genere la operación y
	mantenimiento de la maquinaria y equipo.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave	Descripción	
	Campo de aplicación	
	La presente Norma rige en todo el territorio nacional y aplica en todos los centros trabajo que	
	por la naturaleza de sus procesos empleen maquinaria y equipo.	
	7. Programa específico de seguridad para la operación y mantenimiento de la maquinaria y equipo	
	7.1 Operación de la maquinaria y equipo.	
	El programa debe contener procedimientos para que:	
	 a) los protectores y dispositivos de seguridad se instalen en el lugar requerido y se utilicen durante la operación; 	
	b) se mantenga limpia y ordenada el área de trabajo;	
	c) la maquinaria y equipo estén ajustados para prevenir un riesgo;	
	 d) las conexiones de la maquinaria y equipo y sus contactos eléctricos estén protegidos y no sean un factor de riesgo; 	
	e) el cambio y uso de la herramienta y el herramental se realice en forma segura;	
	f) el desarrollo de las actividades de operación se efectúe en forma segura;	
	g) el sistema de alimentación y retiro de la materia prima, subproducto y producto terminado	
	no sean un factor de riesgo.	
	7.2 Mantenimiento de la maquinaria y equipo	
	El programa debe contener:	
	7.2.1 La capacitación que se debe otorgar a los trabajadores que realicen las actividades de mantenimiento.	
	7.2.2 La periodicidad y el procedimiento para realizar el mantenimiento preventivo y, en su caso, el correctivo, a fin de garantizar que todos los componentes de la maquinaria y equipo estén en condiciones seguras de operación, y se debe cumplir, al menos, con las siguientes	
	condiciones.	
	Manejo y almacenamiento de materiales- condiciones y procedimientos de seguridad (NOM- 006-STPS-1993 antigua).	
	1. Objetivo	
	Establecer las condiciones y procedimientos de seguridad para evitar riesgos de traba	
	ocasionados por el manejo de materiales en forma manual y mediante el uso de maquinaria.	
	2. Campo de aplicación	
	La presente Norma Oficial Mexicana rige en todo el territorio nacional y aplica en todos los centros de trabajo donde se realice manejo de materiales, de forma manual o con ayuda de	
	maquinaria.	
	Para polipastos y malacates, eslingas, grúas, montacargas, electroimanes, cargadores frontales, transportadores	
Para maquinaria similar o que sea combinación de las enunciadas en los aparta		
	al 7.7, instrucciones equivalentes a las descritas en dichos apartados.	
M-011-STPS-2001	Condiciones de seguridad e higiene en los centros de trabajo donde se genere ruido.	
	Objetivo	
	Establecer las condiciones de seguridad e higiene en los centros de trabajo donde se genere	
	ruido que por sus características, niveles y tiempo de acción, sea capaz de alterar la salud	
	de los trabajadores; los niveles máximos y los tiempos máximos permisibles de exposición	
	por jornada de trabajo, su correlación, y la implementación de un programa de conservación de la audición.	
	de la audición. Campo de aplicación	
	Esta norma rige en todo el territorio nacional y aplica en todos los centros de trabajo en los	
	que exista exposición del trabajador a ruido.	
	Límites máximos permisibles de exposición a ruido	
	Los límites máximos permisibles de exposición a ruido se establecen en el apéndice A.	

Cálculo para el tiempo de exposición. Cuando el NER en los centros de trabajo, esté entre dos de las magnitudes consignadas en la tabla A.1, (90 y 105 dB "A"), el tiempo máximo permisible de exposición, se debe calcular con la ecuación siguiente:

$$TMPE = \frac{8}{2^{\frac{NER-90}{3}}}$$

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

7.3 Cuando el NER sea superior a 105 dB(A), se deben implementar una o más de las medidas de control descritas en el inciso a) del apartado 8.7.1.

Tabla A.1 Límites máximos permisibles de exposición

NER	TMPE
90 dB (A)	8 horas
93 dB (A)	4 horas
96 dB (A)	2 horas
99 dB (A)	1 horas
102 dB (A)	30 minutos
105 dB (A)	15 minutos

Clave	Descripción
	Equipo de protección personal-selección, uso y manejo en los centros de trabajo. Objetivo
trabajadores, el equipo de protección personal correspondiente para protegerlos de lo medio ambiente de trabajo que puedan dañar su integridad física y su salud. Campo de aplicación	, , ,
	equipo de protección personal para proteger a los trabajadores contra los riesgos derivados de las actividades que desarrollen.

Tabla A1

Determinación del equipo de protección personal

Clave y región	Determinación del equipo de protección personal		
anatómica	Clave y epp	Tipo de riesgo en función de la actividad del trabajador	
1. Cabeza	a) casco contra impacto b) casco dieléctrico c) capuchas	 a) Golpeado por algo, que sea un posibilidad de riesgo continuo inherente a su actividad. b) Riesgo a una descarga eléctrica (considerar alto o bajo voltaje, los cascos son diferentes). c) Exposición a temperaturas bajas o exposición a partículas. Protección con una capucha que puede ir abajo del casco de protección personal. 	
2. Ojos y cara	a) anteojos de protección b) googles c) pantalla facial d) careta para soldador e) gafas para soldador	otección a) Riesgo de proyección de partículas o líquidos. En caso de estar expuesto a radiaciones, se utilizan anteojos de protección contra la radiación. b) Riesgo de exposición a vapores o humos que pudieran irritar los ojos o	
3. Oídos	a) tapones auditivos b) conchas acústicas	 a) Protección contra riesgo de ruido; de acuerdo al máximo especificado en el producto o por el fabricante. b) Mismo caso del inciso A. 	
Aparato respiratorio	a) respirador contra partículas b) respirador contra gases y vapores c) mascarilla desechable d) equipo de respiración autónomo	En este tipo de productos es importante verificar las recomendaciones o especificaciones de protección del equipo, hecha por el fabricante del producto. a) Protección contra polvos o partículas en el medio ambiente laboral y que representan un riesgo a la salud del trabajador. b) Protección contra gases y vapores. Considerar que hay diferentes tipos de gases y vapores para los cuales aplican también diferentes tipos de respiradores, incluyendo para gases o vapores tóxicos. c) Mascarilla sencilla de protección contra polvos. d) Se utiliza cuando el trabajador entra a espacios confinados o cuando un respirador no proporciona la protección requerida.	
5. Extremidades superiores	a) guantes contra sustancias químicas b) guantes dieléctricos c) guantes contra temperaturas extremas d) guantes e) mangas	En este tipo de productos es importante verificar las recomendaciones o especificaciones de los diferentes guantes existentes en el mercado, hecha por el fabricante del producto. Su uso depende de los materiales o actividad a desarrollar. a) Riesgo por exposición o contacto con sustancias químicas corrosivas. b) Protección contra descargas eléctricas. Considerar que son diferentes guantes dependiendo de protección contra alta o baja tensión. c) Riesgo por exposición a temperaturas bajas o altas.	

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave y región anatómica	Clave y epp	Tipo de riesgo en función de la actividad del trabajador
		 d) Hay una gran variedad de guantes: tela, carnaza, piel, pvc, látex, entre otros. Dependiendo del tipo de protección que se requiere, actividades expuestas a corte, vidrio, etc. e) Se utilizan cuando es necesario extender la protección de los guantes hasta los brazos.
6. Tronco	a) mandil contra altas temperaturas b) mandil contra sustancias químicas c) overol d) bata e) ropa contra sustancias peligrosas	a) Riesgo por exposición a altas temperaturas; cuando se puede tener contacto del cuerpo con algo que esté a alta temperatura. b) Riesgo por exposición a sustancias químicas corrosivas; cuando se puede tener contacto del cuerpo con este tipo de sustancias. c) Extensión de la protección en todo el cuerpo por posible exposición a sustancias o temperaturas. Considerar la facilidad de quitarse la ropa lo más pronto posible, cuando se trata de sustancias corrosivas. d) Protección generalmente usada en laboratorios u hospitales. e) Es un equipo de protección personal que protege cuerpo, cabeza, brazos, piernas pies, cubre y protege completamente el cuerpo humano ante la exposición a sustancias altamente tóxicas o corrosivas.
7. Extremidades inferiores	a) calzado ocupacional b) calzado contra impactos c) calzado conductivo d) calzado dieléctrico e) calzado contra sustancias químicas f) polainas g) botas impermeables	 a) Proteger a la persona contra golpes, machacamientos, resbalones, etc. b) Protección mayor que la del inciso anterior contra golpes, que pueden representar un riesgo permanente en función de la actividad desarrollada. c) Protección del trabajador cuando es necesario que se elimine la electricidad estática del trabajador; generalmente usadas en áreas de trabajo con manejo de sustancias explosivas. d) Protección contra descargas eléctricas. e) Protección de los pies cuando hay posibilidad de tener contacto con algunas sustancias químicas. Considerar especificación del fabricante. f) Extensión de la protección que pudiera tenerse con los zapatos exclusivamente. g) Generalmente utilizadas cuando se trabaja en áreas húmedas.
8. Otros	a) equipo de protección contra caídas de altura b) equipo para brigadista contra incendio	a) Específico para proteger a trabajadores que desarrollen sus actividades en alturas y entrada a espacios confinados. b) Específico para proteger a los brigadistas contra altas temperaturas y fuego. Hay equipo adicional en función de las actividades rescate a realizar.

Clave	Descripción
NOM-020-STPS-2011	Recipientes sujetos a presión, recipientes criogénicos y de vapor o calderas - funcionamiento - condiciones de seguridad. Recipientes sujetos a presión, recipientes criogénicos y generadores de vapor o calderas - Funcionamiento - Condiciones de Seguridad. Objetivo: Establecer los requisitos de seguridad para el funcionamiento de los recipientes sujetos a presión, recipientes criogénicos y generadores de vapor o calderas en los centros de trabajo, a fin de prevenir riesgos a los trabajadores y daños en las instalaciones. Aplicación: La presente Norma Oficial Mexicana rige en todo el territorio nacional y aplica en todos los centros de trabajo en donde funcionen recipientes sujetos a presión, recipientes criogénicos y generadores de vapor o calderas. La presente Norma Oficial Mexicana no aplica para los equipos siguientes: a) Campanas de buceo; b) Campanas o cámaras hiperbáricas; c) Recipientes utilizados como extintores; d) Contenedores que trabajen a presión atmosférica; e) Recipientes que trabajen interconectados en una misma línea de proceso, donde la presión de operación del conjunto de equipos y de cada uno de los equipos, se encuentren entre 29.42 kPa y 196.14 kPa de presión manométrica y, al final de la línea de proceso, se encuentren abiertos a la atmósfera; f) Tuberías, cabezales de distribución que no se utilicen como acumuladores de fluidos y sus componentes (juntas de expansión y conexiones); g) Recipientes portátiles que contengan gases comprimidos; h) Accesorios presurizados y utilizados como componentes o mecanismos que sirven para mezclado, separación, aspersión, distribución, medición, filtrado o control de fluidos que no rebasen 0.15 m de diámetro nominal, instalados en los recipientes sujetos a presión; i) Recipientes instalados en equipos móviles asociados con sus sistemas de frenado;

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave	Descripción	
	vigilancia compete a la Secretaría de Energía, y	
	k) Carros-tanque que transportan gases comprimidos, cuya regulación se encuentra a cargo de la	
	Secretaría de Comunicaciones y Transportes.	
NOM-025-STPS-2008	Condiciones de iluminación en los centros de trabajo (actual).	
	Objetivo	
	Establecer las características de iluminación en los centros de trabajo, de tal forma que no sea un	
	factor de riesgo para la salud de los trabajadores al realizar sus actividades.	

Tabla 1. Niveles mínimos de iluminación

Tarea visual del puesto de trabajo	Área de trabajo	Niveles mínimos de iluminación (LUX)
En exteriores: distinguir el área de tránsito, desplazarse caminando, vigilancia, movimiento de vehículos	Áreas generales exteriores: patios y estacionamientos	20
En interiores: distinguir el área de tránsito, desplazarse caminando, vigilancia, movimiento de vehículos	Áreas generales interiores: almacenes de poco movimiento, pasillos, escaleras, estacionamientos cubiertos, labores en minas subterráneas, iluminación de emergencia	50
Requerimiento visual simple: inspección visual, recuento de piezas, trabajo en banco y máquina	Áreas de servicios al personal: almacenaje rudo, recepción y despacho, casetas de vigilancia, cuartos de compresores y pailera	200
Distinción moderada de detalles: ensamble simple, trabajo medio en banco y máquina, inspección simple, empaque y trabajos de oficina	Talleres: áreas de empaque y ensamble. aulas y oficinas	300
Distinción clara de detalles: maquinado y acabados delicados, ensamble e inspección moderadamente difícil, captura y procesamiento de información, manejo de instrumentos y equipo de laboratorio	Talleres de precisión: salas de cómputo, áreas de dibujo, laboratorios	500
Distinción fina de detalles: maquinado de precisión, ensamble e inspección de trabajos delicados, manejo de instrumentos y equipo de precisión, manejo de piezas pequeñas	Talleres de alta precisión: de pintura y acabado de superficies, y laboratorios de control de calidad	750
Alta exactitud en la distinción de detalles: ensamble, proceso e inspección de piezas pequeñas y complejas y acabados con pulidos finos	Áreas de proceso: ensamble e inspección de piezas complejas y acabados con pulido fino	1 000
Alto grado de especialización en la distinción de detalles	Áreas de proceso de gran exactitud	2 000

Clave	Descripción
NOM-026-STPS-2008	Colores y señales de seguridad e higiene, e identificación de riesgos por fluidos conducidos en tuberías. Sustituye a la NOM-026-STPS-1998
	Objetivo
	Establecer los requerimientos en cuanto a los colores y señales de seguridad e higiene y la identificación de riesgos por fluidos conducidos en tuberías.
	Campo de aplicación
	Esta Norma rige en todo el territorio nacional y aplica en todos los centros de trabajo, excepto lo establecido en el apartado siguiente.
	La presente norma no aplica en:
	 a) La señalización para la transportación terrestre, marítima, fluvial o aérea, que sea competencia de la Secretaría de Comunicaciones y Transportes;
	 b) La identificación de riesgos por fluidos conducidos en tuberías subterráneas u ocultas, ductos eléctricos y tuberías en centrales nucleares, y
	c) Las tuberías instaladas en las plantas potabilizadoras de agua, así como en las redes de distribución de las mismas, en lo referente a la aplicación del color verde de seguridad.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Color de seguridad	Significado	Indicaciones y precisiones
Rojo	Paro.	Alto y dispositivos de desconexión para emergencias.
	Prohibición.	Señalamientos para prohibir acciones específicas.
	Material, equipo y sistemas para combate de incendios.	Ubicación y localización de los mismos e identificación de tuberías que conducen fluidos para el combate de incendios.
Amarillo	Advertencia de peligro.	Atención, precaución, verificación e identificación de tuberías que conducen fluidos peligrosos.
	Delimitación de áreas.	Límites de áreas restringidas o de usos específicos.
	Advertencia de peligro por radiaciones ionizantes.	Señalamiento para indicar la presencia de material radiactivo.
Verde	Condición segura.	Identificación de tuberías que conducen fluidos de bajo riesgo. Señalamientos para indicar salidas de emergencia, rutas de evacuación, zonas de seguridad y primeros auxilios, lugares de reunión, regaderas de emergencia, lavaojos, entre otros.
Azul	Obligación.	Señalamientos para realizar acciones específicas.

Tabla 2.- Selección de colores contrastantes

Color de seguridad	Color contrastante
Rojo	Blanco
Amarillo	Negro, magenta
Verde	Blanco
Azul	Blanco

Tabla 4.- Colores de seguridad para tuberías y su significado

Color de seguridad	Significado
Rojo	Identificación de fluidos para el combate de incendio conducidos por tubería.
Amarillo	Identificación de fluidos peligros conducidos por tubería.
Verde	Identificación de fluidos de bajo riesgo conducidos por tubería.

Clave	Descripción
NOM-027-STPS-2008	Actividades de soldadura y corte-condiciones de seguridad e higiene.
	Objetivo:
	Establecer condiciones de seguridad e higiene en los centros de trabajo para prevenir riesgos de
	trabajo.
	Campo de aplicación:
	Esta norma rige en todo el territorio nacional y aplica en todos los centros de trabajo donde se
	realicen actividades de soldadura y corte.

El procedimiento de rescate de un trabajador accidentado durante las actividades de soldadura y corte, debe contener al menos lo siguiente:

- a) Listado del personal asignado;
- b) Funciones y responsabilidades del personal asignado;
- c) Instrucciones concretas de cómo realizar el rescate;
- d) Equipos o aparatos necesarios para la ejecución del rescate;
- e) Técnicas para aplicar la reanimación cardiopulmonar (RCP), y
- f) Plan para la atención y traslado de las víctimas a lugares de atención médica, que indique:
- 1. La colocación en lugar visible de las instrucciones específicas de qué hacer en caso de accidente;
- 2. Las acciones inmediatas que incluyan la desconexión de la fuente de energía, la ventilación del área de trabajo por medios naturales o artificiales, las instrucciones para retirar al trabajador accidentado del peligro inmediato, la colocación de la víctima en un lugar seguro, la aplicación de los primeros auxilios o la instrucción para llamar a la persona idónea y pedir ayuda;
- 3. La forma en que se debe dar una respuesta secundaria, misma que describa la información que se debe proporcionar con relación al accidente, por ejemplo, si la víctima tuvo contacto con la energía eléctrica, si la causa fue por una descarga eléctrica o por una explosión de algún dispositivo eléctrico, o bien fue por deficiencia de oxígeno en espacios confinados u otros;
- 4. Los hospitales o unidades médicas más próximos para trasladar a la víctima para que reciba la atención médica, y
- 5. Los números telefónicos para llamar en caso de emergencia.

Clave	Descripción
NOM-029-STPS-2011	Mantenimiento de las instalaciones eléctricas en los centros de trabajo-condiciones de seguridad
NOM-030-STPS-2009	Servicios preventivos de seguridad y salud en el trabajo–funciones y actividades
NOM-032-STPS-2008	Seguridad para minas subterráneas de carbón
NOM-100-STPS-1994	Seguridad-extintores contra incendio a base de polvo químico seco con presión contenida-especificaciones.
NOM-122-STPS-1996	Relativa a las condiciones de seguridad e higiene para el funcionamiento de los recipientes sujetos a presión y generadores de vapor o calderas que operen en los centros de trabajo. Objetivo: Esta Norma Oficial Mexicana establece los requisitos mínimos de seguridad e higiene con que deben contar los recipientes sujetos a presión y los generadores de vapor o calderas que se instalen en los centros de trabajo, así como las características de las inspecciones que se realicen con el fin de vigilar el cumplimiento de esta Norma. Aplicación: Esta Norma Oficial Mexicana es de observancia obligatoria en los centros de trabajo donde se utilicen los recipientes sujetos a presión y generadores de vapor o calderas a que la misma se refiere. Excepciones: Para efectos de esta Norma, los equipos que cuenten al menos con una de las características citadas en este punto, quedan exceptuados del trámite de autorización de funcionamiento por esta Secretaría, debiendo cumplir con los demás puntos de la presente Norma: Recipientes sujetos a presión con un diámetro interior menor a 152 mm. Que contengan agua con temperatura inferior a 70 °C, y un volumen menor a 450 L. Los que trabajen a presión atmosférica en el centro de trabajo donde estén instalados. Los interenfriadores de compresores y carcazas de bombas. Recipientes a presión, los cuales son partes integrales o componentes de dispositivos mecánicos de rotación o reciprocantes, tales como bombas, compresores, turbinas, generadores, cilindros hidráulicos o neumáticos y máquinas en general. Los que trabajan con agua o aire a una presión menor de 5 kg/cm². Los recipientes sujetos a presión para líquidos criogénicos con diámetro interior menor a 1000 mm y con una capacidad menor a los 1000 L. Generadores de vapor o calderas: Con una temperatura del agua menor a 70 °C. Con una superficie de calefacción menor a 15 m². Con una presión de operación menor a 350 kPa (3.569 kg/cm²).
Clave	Descripción
	Otros equipos: Componentes de tuberías, tales como tubos, bridas, juntas, válvulas, uniones de expansión y otros componentes a presión tales como filtros, mezcladores, separadores, distribuidores y controladores de medición de flujo. Todos estos conocidos como componentes de sistemas de tuberías. Los recipientes portátiles de gases comprimidos y los recipientes que contengan gas licuado de petróleo, que se encuentren regulados por otras disposiciones jurídicas y cuya aplicación compete a la Secretaría de Energía.
PROY-NOM-119-STPS- 1995	Requerimientos de seguridad para operación y mantenimiento de las máquinas-herramienta denominadas tornos.
NOM-Z-3-1986	Norma oficial mexicana referida al dibujo técnico. Vistas.
NOM-Z-4-1986	Norma oficial mexicana referida al dibujo técnico. Líneas.
NOM-Z-5-1986	Norma oficial mexicana referida al dibujo técnico. Rayados.
NOM-Z-6-1986	Norma oficial mexicana referida al dibujo técnico. Cortes y secciones.
NOM-Z-23-1986	Norma oficial mexicana referida al dibujo técnico. Clasificación de los dibujos según su presentación.
NOM-Z-25-1986	Norma oficial mexicana referida al dibujo técnico. Acotaciones.

Clave	Descripción
NOM-001-SECRE-2010	Especificaciones del gas natural (cancela y sustituye a la NOM-001-SECRE-2003, Calidad del gas natural y la NOM-EM-002-SECRE-2009, Calidad del gas natural durante el periodo de emergencia severa). 1. Objetivo
	Esta Norma Oficial Mexicana (en lo sucesivo la Norma) tiene como finalidad establecer las especificaciones que debe cumplir el gas natural que se maneje en los sistemas de transporte, almacenamiento y distribución de gas natural, para preservar la seguridad de las personas, medio ambiente e instalaciones de los permisionarios y de los usuarios. Campo de aplicación: Esta Norma es aplicable al gas natural que se entrega en cada uno de los puntos de inyección a los sistemas de transporte, almacenamiento y distribución, así como en cada uno de los puntos de transferencia de custodia a otros permisionarios o usuarios finales. La Norma no aplica al gas natural que se conduce desde pozos y complejos procesadores, ni al gas
	natural licuado que se transporta por buques tanque a las terminales de almacenamiento de gas natural licuado, ni al gas natural licuado y el gas natural que se maneja en dichas terminales previamente a su inyección al sistema de transporte.
NOM-007-SECRE-2010	Transporte de gas natural (cancela y sustituye a la NOM-007-SECRE-1999, Transporte de gas natural). Objetivo. Esta norma establece las especificaciones técnicas y los requisitos mínimos de seguridad que deben cumplir los sistemas de transporte de gas natural por medio de ductos. Aplicación: Esta Norma es aplicable a los sistemas de transporte de gas natural por medio de ductos (Sistemas de Transporte) localizados en territorio nacional. Incluye todos aquellos Sistemas de Transporte en diseño, construcción y operación, e inclusive los que están empacados, inertizados y abandonados, y aquéllos sistemas de transporte que ya estando construidos se modifiquen en su diseño original. La aplicación de la Norma a los Sistemas de Transporte localizados en territorio nacional comprende desde el(los) punto(s) de origen del ducto hasta el(los) puntos de destino. Esta Norma es aplicable a ductos, equipos, instalaciones principales y accesorias y dispositivos de los sistemas de transporte en acero al carbón. Esta Norma no es aplicable a los sistemas de transporte de gas natural por medio de ductos necesarios para interconectar la explotación y producción del gas natural, excepto aquellos que cuenten con un título de permiso expedido por la Comisión Reguladora de Energía.
NOM-008-SECRE-2002	Control de la corrosión externa en tuberías de acero enterradas y/o sumergidas. Las estructuras metálicas o tuberías de acero enterradas y/o sumergidas están expuestas a los efectos de la corrosión externa como consecuencia del procesos electroquímico. Para reducir este efecto es necesario ejercer un control de los factores que influyen en el proceso de corrosión, donde la adecuada selección del material de la tubería y la aplicación de los recubrimientos son los primeros medios para evitar dichos daños. El objetivo de esta norma es establecer los requisitos mínimos para la implementación, instalación, operación, mantenimiento y seguridad para el control de la corrosión externa en tuberías de acero enterradas y/o sumergidas.
NOM-009-SECRE-2002	Monitoreo, detección y clasificación de fugas de gas natural y gas L.P. en ductos. Esta Norma establece los requisitos mínimos para el monitoreo, detección y clasificación de fugas de gas natural y gas LP en ductos, que deben cumplir los permisionarios de los sistemas de transporte y distribución por medio de ductos que operen en la República Mexicana. Aplicaciones, Esta NOM se aplica a los sistemas de transporte y distribución de gas natural y gas LP por medio de ductos que operen en la República Mexicana. El titular del permiso correspondiente es el responsable del cumplimiento de la NOM y demás disposiciones jurídicas aplicables.
NOM-010-SECRE-2002	Gas natural comprimido para uso automotor. Requisitos mínimos de seguridad para estaciones de servicio. Objetivo: Esta Norma establece los requisitos mínimos de seguridad que deben cumplir las estaciones de servicio, instaladas en el República Mexicana con el fin de suministrar gas natural comprimido para los vehículos automotores que lo utilizan como combustible. Aplicación: Esta Norma aplica a los equipos, componentes y materiales utilizados para darle las condiciones requeridas al gas natural comprimido para su uso, desde el punto de recepción de un sistema de transporte o distribución de gas natural hasta el conector de llenado de gas natural comprimido. Esta norma se complementa con NOM-001-SECRE-1997 (calidad de gas natural), NOM-006-SECRE-1999 (Odorización del gas natural), NOM-008-SECRE-1999 (Control de la corrosión externa en tuberías de acero enterradas y/o sumergibles), NOM-011-SECRE-2002 (Gas natural comprimido para automotor), NOM-001-SEDE-1999 (instalaciones eléctricas, instalación), NOM-026-STPS-1998 (colores y señales de seguridad e higiene, e identificación por fluidos conducidos en tuberías).
NOM-016-SSA3-2012	Que establece las características mínimas de infraestructura y equipamiento de hospitales y consultorios de atención médica especializada.
NOM-SEDE-001-1999	La presente norma oficial mexicana de instalaciones eléctricas, responde a las necesidades técnicas que requieren la utilización de las instalaciones eléctricas en el ámbito nacional. Objetivo: El objetivo de esta NOM es establecer las disposiciones y especificaciones de carácter técnico que deben satisfacer las instalaciones destinadas a la utilización de la energía eléctrica, a fin de que ofrezcan condiciones adecuadas de seguridad para las personas y sus propiedades, en lo referente a protección contra choque eléctrico, efectos térmicos, sobrecorrientes, corrientes de falla, sobretensiones, fenómenos atmosféricos e incendios, entre otros. El cumplimiento de las disposiciones indicadas en esta NOM garantizará el uso de la energía eléctrica en forma segura.

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Aplicación: a) Propiedades industriales, comerciales, residenciales y de vivienda, institucional sea su uso, públicas y privadas, y en cualquiera de los niveles de tensiones eléctric hotuyendo las utilizadas para el equipo eléctrico conectado por los usuarios. edificios utilizados por las empresas suministradoras, tales como edificios de oficiales de comerciales de la comerciale de la comercial	
incluyendo las utilizadas para el equipo eléctrico conectado por los usuarios. edificios utilizados por las empresas suministradoras, tales como edificios de di estacionamientos, talleres mecánicos y edificios para fines de recreación. b) Casas móviles, vehículos de recreo, edificios flotantes, ferias, circos estacionamientos, talleres de servicio automotriz, estaciones de servicio, lugares d salas y estudios de cinematografía, hangares de aviación, clínicas y hospitale agricolas, marinas y muelles, entre otros. c) Plantas generadoras de emergiacio o de reserva propiedad de los usuarios. d) Subestaciones, líneas aéreas de energía eléctrica y de comunicaciones subterráneas. e) Cualesquiera otras instalaciones que tengan por finalidad el uso de la energía elé estro de la energía el establece los requisitos técnicos mínimos de seguridad que se deben observa diseño y construcción de estaciones de Gas L.P., para carburación con almacenar destinan exclusivamente a llenar recipientes con Gas L.P. de los vehículos que combustible. Asimismo se establece el procedimiento para la evaluación de correspondiente. En las estaciones de carburación que utilizen los recipientes de al una planta de almacenamiento para distribución, esta Norma aplica a par interconexión de la estación. RRF-132-PEMEX-2013 Establece los requisitos que se deben cumplir para la adquisición de los compress dulizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norm establece los requientimentos técnicos y documentales para compresores recipr gases de proceso, con velocidades de hasta 600 r/min; incluyendo sus sistems controles y equipo auxiliar. Esta norma no es aplicable para compresores sent impulsores montados entre chumaceras para aire o gases de proceso incluyendo lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrifugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alencando de los para uso doméstico, los permacolor y los deno	
estacionamientos, talleres mecánicos y edificios para fines de recreación. b) Casas móviles, vehículos de recreo, edificios fotantes, ferias, circos estacionamientos, talleres de servicio automotriz, estaciones de servicio, lugares di salas y estudios de cinematografía, hangares de aviación, clínicas y hospitale agrícolas, marinas y muelles, entre otros. c) Plantas generadoras de emergencia o de reserva propiedad de los usuarios. d) Subestaciones, líneas aéreas de energia eléctrica y de comunicaciones subterráneas. O Cualesquiera otras instalaciones que tengan por finalidad el uso de la energía eléctrica y de comunicaciones subterráneas. O Cualesquiera otras instalaciones que tengan por finalidad el uso de la energía eléctrica viven de la establece los requisitos técnicos mínimos de seguridad que se deben observa destinan exclusivamente a llenar recipientes con Gas L.P. de los vehículos que combustible. Asimismo se establece el procedimiento para la evaluación de correspondiente. En las estaciones de carburación que utilicen los recipientes de al una planta de almacenamiento para distribución, esta Norma aplica a par utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norre establece los requirimientos técnicos y documentales para compresores recipira gases de proceso, con velocidades de hasta 600 frmi; incluyendo sus sistemi controles y equipo auxiliar. Esta norma no es aplicable para compresores: a) Con clindros entríados por aire, b) Accionados por máquina de gas integrales, c) Accionados por máquina de gas con pistones encamisados de efecto simple (tip sirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitos que se deben cumplir para la adquisición de los compresores centrimpuisores montados entre chumaceras para aire o gases de proceso incluyende lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrífugos con engrane integrado b) Compresores de aire para servicios generales	ios. Instalaciones en
salas y estudios de cinematografía, hangares de aviación, clínicas y hospitale agrícolas, marinas y muelles, entre otros. c) Plantas generadoras de emergencia o de reserva propiedad de los usuarios. d) Subestaciones, líneas aéreas de energía eléctrica y de comunicaciones subterráneas. e) Cualesquiera otras instalaciones que tengan por finalidad el uso de la energía eléctrica y de Comunicaciones establece los requisitos técnicos mínimos de seguridad que se deben observa diseño y construcción de estaciones de Gas L.P., para carburación con almacenar destinan exclusivamente a llenar recipientes con Gas L.P. de los vehículos que combustible. Asimismo se establece el procedimiento para la evaluación de correspondiente. En las estaciónes de carburación que utilicen los recipientes de al una planta de almacenamiento para distribución, esta Norma aplica a par interconexión de la estación. NRF-132-PEMEX-2013 Establece los requisitos que se deben cumplir para la adquisición de los compresor a utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norn establece los requerimientos técnicos y documentales para compresores reizo gases de procesos, con velocidades de hasta 600 r/min; incluyendo sus sistems controles y equipo auxiliar. Esta norma no es aplicable para compresores: a) Con cilindros entríados por aire, b) Accionados por máquina de gas integrales, c) Accionados por máquina de gas con pistones encamisados de efecto simple (tip sirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitios que se deben cumplir para la adquisición de los compresores certir impuisores montados entre chumaceras para aire o gases de proceso incluyende lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrifugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 c) Sopladores. NOM-011-SCFI-2004 Esta Norma Oficial Mexicana establece las especificaciones y métodos	
c) Plantas generadoras de emergencia o de reserva propiedad de los usuarios. d) Subestaciones, líneas aéreas de energía eléctrica y de comunicaciones subterráneas. e) Cualesquiera otras instalaciones que tengan por finalidad el uso de la energía eléctrica y de comunicaciones Establece los requisitos técnicos mínimos de seguridad que se deben observa diseño y construcción de estaciones de Gas L.P., para carburación con almacenar destinan exclusivamente a llenar recipientes con Gas L.P., de los vehículos que combustible. Asimismo se establece el procedimiento para la evaluación de correspondiente. En las estaciones de carburación que utilicen los recipientes de al una planta de almacenamiento para distribución, esta Norma aplica a par interconexión de la estación. NRF-132-PEMEX-2013 Establece los requisitos que se deben cumplir para la adquisición de los compresor a utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norne establece los requentimientos técnicos y documentales para compresores reciprogases de proceso, con velocidades de hasta 600 r/min; incluyendo sus sistemic controles y equipo auxiliar. Esta norma no es aplicable para compresores reciprogases de proceso, con velocidades de hasta 600 r/min; incluyendo sus sistemic controles y equipo auxiliar. Esta norma no es aplicable para compresores: a) Con cilindros enfriados por aire, b) Accionados por máquina de gas integrales, c) Accionados por máquina de gas con pistones encamisados de efecto simple (tip sirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitos que se deben cumplir para la adquisición de los compres utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norne establece los requierimientos técnicos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyende utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norne establece los requierimentos entre controles y de controles y equipo au	
e) Cualesquiera otras instalaciones que tengan por finalidad el uso de la energía ele NOM-003-SEDG-2004 Establece los requisitos técnicos mínimos de segunidad que se deben observa diseño y construcción de estaciones de Gas L.P., para carbruración con almacenar destinan exclusivamente a llenar recipientes con Gas L.P. de los vehículos que combustible. Asimismo se establece el procedimiento para la evaluación de correspondiente. En las estaciones de carburación que utilicen los recipientes de al una planta de almacenamiento para distribución, esta Norma aplica a par interconexión de la estación. NRF-132-PEMEX-2013 Establece los requisitos que se deben cumplir para la adquisición de los compress a utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norm establece los requienimientos técnicos y documentales para compresores recipir gases de proceso, con velocidades de hasta 600 r/min; incluyendo sus sistemi controles y equipo auxiliar. Esta norma no es aplicable para compresores: a) Con cilindros enfriados por aire, b) Accionados por máquina de gas integrales, c) Accionados por máquina de gas con pistones encamisados de efecto simple (tip sirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitos que se deben cumplir para la adquisición de los compres utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norm establece los requerimientos técnicos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyende lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrifugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 c) Sopladores. NOM-011-SCFI-2004 Esta Norma Official Mexicana establece las especificaciones y métodos de prueba para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Métodos de prueba 7.1 Métodos de prueba para termómetros de lí	ones e instalaciones
diseño y construcción de estaciones de Gas L.P., para carburación con almacenar destinan exclusivamente a llenar recipientes con Gas L.P. de los vehículos que combustible. Asimismo se establece el procedimiento para la evaluación de correspondiente. En las estaciones de carburación que utilicen los recipientes de al una planta de almacenamiento para distribución, esta Norma aplica a par interconexión de la estación. NRF-132-PEMEX-2013 Establece los requisitos que se deben cumplir para la adquisición de los compress a utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norm establece los requerimientos técnicos y documentales para compresores reciprogases de proceso, con velocidades de hasta 600 r/min; incluyendo sus sistemicontroles y equipo auxiliar. Esta norma no es aplicable para compresores: a) Con cilindros enfriados por aire, b) Accionados por máquina de gas integrales, c) Accionados por máquina de gas con pistones encamisados de efecto simple (tipsirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitos que se deben cumplir para la adquisición de los compres utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norm establece los requerimientos técnicos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyendo lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrifugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 o) Sopladores. NOM-011-SCFI-2004 Esta Norma Oficial Mexicana establece las especificaciones y métodos de prueba p termómetros de líquido en vidrio de vástago sólido, de uso general tanto en la indus laboratorios. El intervalo de medición cubierto es de -35°C y por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas.	a eléctrica.
INRF-132-PEMEX-2013 Establece los requisitos que se deben cumplir para la adquisición de los compresor a utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norre establece los requerimientos técnicos y documentales para compresores recipror gases de proceso, con velocidades de hasta 600 r/min; incluyendo sus sistems controles y equipo auxiliar. Esta norma no es aplicable para compresores: a) Con cilindros enfriados por aire, b) Accionados por máquina de gas integrales, c) Accionados por máquina de gas con pistones encamisados de efecto simple (tip sirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitos que se deben cumplir para la adquisición de los compres utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norm establece los requerimientos técnicos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyendo lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrífugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 o; Sopladores. NOM-011-SCFI-2004 Esta Norma Oficial Mexicana establece las especificaciones y métodos de prueba p termómetros de líquido en vidrio de vástago sólido, de uso general tanto en la indus laboratorios. El intervalo de medición cubierto es de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C y por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio cuya temperatu operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperatu operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está dis	enamiento fijo, que se que lo utilizan como de la conformidad e almacenamiento de
a utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norr establece los requerimientos técnicos y documentales para compresores recipre gases de proceso, con velocidades de hasta 600 r/min; incluyendo sus sistems controles y equipo auxiliar. Esta norma no es aplicable para compresores: a) Con cilindros enfriados por aire, b) Accionados por máquina de gas integrales, c) Accionados por máquina de gas con pistones encamisados de efecto simple (tip sirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitos que se deben cumplir para la adquisición de los compres utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norm establece los requierimientos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyendo lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrífugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 c) Sopladores. NOM-011-SCFI-2004 Esta Norma Oficial Mexicana establece las especificaciones y métodos de prueba p termómetros de líquido en vidrio de vástago sólido, de uso general tanto en la indus laboratorios. El intervalo de medición cubierto es de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Métodos de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio cuya temperatu operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual	
b) Accionados por máquina de gas integrales, c) Accionados por máquina de gas con pistones encamisados de efecto simple (tip sirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitos que se deben cumplir para la adquisición de los compres utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Nom establece los requerimientos técnicos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyende lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrífugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 c) Sopladores. NOM-011-SCFI-2004 Esta Norma Oficial Mexicana establece las especificaciones y métodos de prueba p termómetros de líquido en vidrio de vástago sólido, de uso general tanto en la indus laboratorios. El intervalo de medición cubierto es de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C y por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperatu operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante a altas. Procedimiento	Norma de Referencia ciprocantes de aire o
c) Accionados por máquina de gas con pistones encamisados de efecto simple (tip sirven como cruceta. d) De aire de planta e instrumentos. NRF-131-PEMEX-2013 Establecer los requisitos que se deben cumplir para la adquisición de los compres utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Norne establece los requerimientos técnicos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyendo lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrífugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 c) Sopladores. NOM-011-SCFI-2004 Esta Norma Oficial Mexicana establece las especificaciones y métodos de prueba para termómetros de líquido en vidrio de vástago sólido, de uso general tanto en la indus laboratorios. El intervalo de medición cubierto es de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C y por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperatur operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	
Establecer los requisitos que se deben cumplir para la adquisición de los compres utilizarse por Petróleos Mexicanos y sus Organismos Subsidiarios. Esta Normestablece los requerimientos técnicos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyendo lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrífugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 c) Sopladores. Esta Norma Oficial Mexicana establece las especificaciones y métodos de prueba per termómetros de líquido en vidrio de vástago sólido, de uso general tanto en la indus laboratorios. El intervalo de medición cubierto es de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C y por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperatur operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	(tipo automotriz) que
establece los requerimientos técnicos y documentales para compresores centr impulsores montados entre chumaceras para aire o gases de proceso incluyendo lubricación, de sellos, controles y equipo auxiliar. Esta norma no es aplicable para: a) Paquetes de compresión centrífugos con engrane integrado b) Compresores de aire para servicios generales o instrumentos alcance de NRF-2 c) Sopladores. NOM-011-SCFI-2004 Esta Norma Oficial Mexicana establece las especificaciones y métodos de prueba para termómetros de líquido en vidrio de vástago sólido, de uso general tanto en la indus laboratorios. El intervalo de medición cubierto es de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C y por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperatur operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	resores centrífugos a
termómetros de líquido en vidrio de vástago sólido, de uso general tanto en la indus laboratorios. El intervalo de medición cubierto es de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C y por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperaturo operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	entrífugos de rotor e endo sus sistemas de ra:
laboratorios. El intervalo de medición cubierto es de -35°C a 550°C. Para los termó intervalos de medición que se extiendan por abajo de -35°C y por arriba de 550°C r presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperaturo peración sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	•
presente Norma Oficial Mexicana. Se excluyen de esta Norma Oficial Mexicana los para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperaturo peración sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	
para uso doméstico, los permacolor y los denominados de máximas y mínimas. 7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperaturo peración sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	·
7. Método de prueba 7.1 Métodos de prueba para termómetros de líquido en vidrio 7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperaturo peración sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	ios termometros
7.1.1 Prueba de estabilidad del bulbo Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperaturo peración sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	
Este procedimiento se aplica para termómetros de líquido en vidrio cuya temperatulo peración sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante altas. Procedimiento	
operación sea mayor o igual de 300°C. La prueba de estabilidad del bulbo está diseñada para determinar la calidad del trat de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante a altas. Procedimiento	atura máxima de
de estabilización del termómetro durante la manufactura del bulbo. Un bulbo con tra inadecuado puede llegar a contraerse con el tiempo, lo cual puede ser significante a altas. Procedimiento	
altas. Procedimiento	n tratamiento térmico
Determinar la temperatura de prueba por medio de la siguiente ecuación: $t_{MAX} -50^{\circ}\text{C} \text{ £ } t_{P} \text{ £ } t_{MAX} -20^{\circ}\text{C}$	
Donde t _{MAX} es la temperatura máxima de operación del termómetro en °C	
t _p es la temperatura de prueba del termómetro en °C Sumergir el termómetro en un baño/horno precalentado (el cual puede ser de pozo manera que el bulbo alcance la temperatura de prueba por un periodo de 5 min.	

Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

Clave	Descripción
	Extraer el termómetro y permitir que se enfríe naturalmente en aire recirculado, o lentamente en el
	baño de prueba a una razón especificada. Cuando éste alcance una temperatura entre 20°C o 50°C
	por arriba de la temperatura ambiente, entonces tomar la lectura en algún punto de referencia, tal
	como puede ser el punto de fusión de hielo (0 °C). Si se usa enfriamiento natural por aire agitado,
	determinar la lectura en el punto de referencia después de 1 h.
	Regresar el termómetro al baño/horno precalentado, y esperar que alcance la temperatura de prueba y mantenerlo por un periodo de 24 h.
	Extraer el termómetro y permitir su enfriamiento a la misma razón en la que fue enfriado inicialmente.
	Redeterminar la temperatura de referencia bajo las mismas condiciones.
	La magnitud del cambio en esta temperatura de referencia como resultado de calentar por un
	periodo de 24 h es una medida de la calidad del vidrio del bulbo, así como del tratamiento térmico de
	estabilización del termómetro durante la manufactura del mismo y no debe ser mayor que el error máximo establecido en las tablas 1 y 2.
	7.2 Prueba de permanencia del pigmento
	La prueba de la permanencia del pigmento está diseñada para determinar la resistencia del material pigmento cuando es expuesto a condiciones extremas.
	Colocar cualquier porción de la sección de la escala del termómetro a probar en un horno
	precalentado preferentemente tipo horizontal, dejando el bulbo de mercurio fuera de la zona de calentamiento.
	Calentar por un periodo de 3 h a aproximadamente 260 °C. Dejarlo enfriar lentamente.
	Permitir su enfriamiento e inspeccionar el termómetro por posibles diferencias en apariencia entre las
	secciones probadas y sin probar de la porción de la escala. El quemado, pérdida, desprendimiento, borrado o cambio en la apariencia del pigmento, es motivo de rechazo.

• ANSI/ASHRAE Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality•

Norma ANSI / ASHRAE 62.1-2007 se aplica para el diseño de equipos de ventilación.

ASHRAE Standard 62.1-2007, Ventilation for Acceptable Indoor Air Quality

Norma ANSI / ASHRAE 62.1-2007 se aplica a todos los espacios destinados para la ocupación humana, excepto los que están dentro de casas unifamiliares, estructuras multifamiliares de tres pisos o menos por encima del nivel, vehículos y aeronaves. La norma define los requisitos para la ventilación y la limpieza del aire de diseño, instalación, puesta en marcha y operación y mantenimiento.

Consejo Técnico

Representantes de Instituciones de Educación Superior

Dra. Dalia Holanda Chávez García
Centro de Enseñanza Técnica y
Superior

Mtro. Mauricio Lendizabal Néstor
Tecnológico de Estudios Superiores de
Tianguistenco

Dr. Miguel Ángel Martínez Romero
Universidad Autónoma de Baja
California

M. en I. Balaam Valle Aguilar
Universidad Autónoma del Estado de
México

Dra. Gabriela Margarita Martínez Cázares
Universidad de Monterrey

Dr. Víctor López Garza
Universidad Michoacana de San
Nicolás de Hidalgo

Dr. Ervin Jesús Alvarez Sánchez Universidad Veracruzana

Dr. Abdiel Gómez Mercado Instituto Tecnológico de Pachuca

Dr. Donato Reyes Ramírez **Tecnológico de Monterrey**

M.C./M.A. Gylmar Mariel Cárdenas Universidad Autónoma de San Luis Potosí

Dr. Sergio Cano Andrade
Universidad de Guanajuato

Dr. José Emiliano Martínez Ordaz Universidad Iberoamericana

Mtro. Germán Fernández García **Universidad Tecnológica de México**

Este formulario es un instrumento de apoyo para quienes sustentarán el Examen General para el Egreso de la Licenciatura en Ingeniería Mecánica (EGEL-IMECA) y está vigente a partir de enero de 2020.

El formulario para el sustentante es un documento cuyo contenido está sujeto a revisiones periódicas. Las posibles modificaciones atienden a los aportes y críticas que hagan los miembros de las comunidades académicas de instituciones de educación superior de nuestro país, los usuarios y, fundamentalmente, las orientaciones del Consejo Técnico del examen.

El Ceneval y el Consejo Técnico del EGEL-IMECA agradecerán todos los comentarios que puedan enriquecer este material. Sírvase dirigirlos a:

Centro Nacional de Evaluación para la Educación Superior, A.C. Subdirección de Evaluación de Egreso en Diseño, Ingenierías y Arquitectura

> Av. Camino al Desierto de los Leones (Altavista) 37, Col. San Ángel, Álvaro Obregón, C.P. 01000, Ciudad de México. Tel: 55 53 22 92 00 ext. 5107

www.ceneval.edu.mx arturo.valverde@ceneval.edu.mx

El Centro Nacional de Evaluación para la Educación Superior es una asociación civil sin fines de lucro constituida formalmente el 28 de abril de 1994, como consta en la escritura pública número 87036 pasada ante la fe del notario 49 del Distrito Federal.

Sus órganos de gobierno son la Asamblea General, el Consejo Directivo y la Dirección General. Su máxima autoridad es la Asamblea General, cuya integración se presenta a continuación, según el sector al que pertenecen los asociados:

Asociaciones e instituciones educativas: Asociación Nacional de Universidades e Instituciones de Educación Superior, A.C.; Federación de Instituciones Mexicanas Particulares de Educación Superior, A.C.; Instituto Politécnico Nacional; Tecnológico de Monterrey; Universidad Autónoma del Estado de México; Universidad Autónoma de San Luis Potosí; Universidad Autónoma de Yucatán; Universidad Popular Autónoma del Estado de Puebla; Universidad Tecnológica de México.

Asociaciones y colegios de profesionales: Barra Mexicana Colegio de Abogados, A.C.; Colegio Nacional de Actuarios, A.C.; Colegio Nacional de Psicólogos, A.C.; Federación de Colegios y Asociación de Médicos Veterinarios y Zootecnistas de México, A.C.; Instituto Mexicano de Contadores Públicos, A.C.

Organizaciones productivas y sociales: Academia de Ingeniería, A.C.; Academia Mexicana de Ciencias, A.C.; Academia Nacional de Medicina, A.C.; Fundación ICA, A.C.

Autoridades educativas gubernamentales: Secretaría de Educación Pública.

El Centro está inscrito desde el 10 de marzo de 1995 en el Registro Nacional de Instituciones Científicas y Tecnológicas del Consejo Nacional de Ciencia y Tecnología, con el número 506.

También es miembro en:

- el International Association for Educational Assessment
- la European Association of Institutional Research
- el Consortium for North American Higher Education Collaboration
- el Institucional Management for Higher Education de la OCDE

